|   | 
Details
   web
Records
Author Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P.
Title (up) Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 19 Pages 22683-22692
Keywords SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides
Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:24104155 Approved no
Call Number Serial 1213
Permanent link to this record
 

 
Author Dauler, E. A.; Kerman, A. J.; Robinson, B. S.; Yang, J. K. W.; Voronov, B. M.; Gol’tsman, G. N.; Berggren, K. K.
Title (up) Achieving high counting rates in superconducting nanowire single-photon detectors Type Conference Article
Year 2006 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuD3 (1 to 2)
Keywords SSPD; SNSPD; Detectors; Photodetectors; Quantum optics; Quantum detectors; Photon counting; Photons; Pulse shaping; Quantum communications; Single photon detectors; Superconductors
Abstract Kinetic inductance is determined to be the primary limitation to the counting rate of superconducting nanowire single-photon counters. Approaches for overcoming this limitation will be discussed.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
Notes Approved no
Call Number Serial 1451
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R.
Title (up) Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5732 Issue Pages 520-529
Keywords NbN SSPD, SNSPD
Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Sensing and Nanophotonic Devices II
Notes Approved no
Call Number Serial 1478
Permanent link to this record
 

 
Author Inderbitzin, K.; Engel, A.; Schilling, A.; Il'in, K.; Siegel, M.
Title (up) An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays Type Journal Article
Year 2012 Publication Abbreviated Journal Appl. Phys. Lett.
Volume 101 Issue Pages
Keywords SSPD, SNSPD, x-ray, Nb
Abstract Although superconducting nanowire single-photon detectors (SNSPDs) are well studied regarding the

detection of infrared/optical photons and keV-molecules, no studies on continuous x-ray photon

counting by thick-film detectors have been reported so far. We fabricated a 100 nm thick niobium

x-ray SNSPD (an X-SNSPD) and studied its detection capability of photons with keV-energies in

continuous mode. The detector is capable to detect photons even at reduced bias currents of 0.4%,

which is in sharp contrast to optical thin-film SNSPDs. No dark counts were recorded in extended

measurement periods. Strikingly, the signal amplitude distribution depends significantly on the photon

energy spectrum.VC
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 878
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title (up) An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record