Records |
Author |
Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N. |
Title |
Superconducting single-photon detector made of MoSi film |
Type |
Journal Article |
Year |
2014 |
Publication |
Supercond. Sci. Technol. |
Abbreviated Journal |
Supercond. Sci. Technol. |
Volume |
27 |
Issue |
9 |
Pages |
095012 |
Keywords |
SSPD, SNSPD |
Abstract |
We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0953-2048 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ korneeva2014superconducting |
Serial |
1044 |
Permanent link to this record |
|
|
|
Author |
Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y. |
Title |
Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors |
Type |
Journal Article |
Year |
2015 |
Publication |
Sci. Rep. |
Abbreviated Journal |
|
Volume |
5 |
Issue |
|
Pages |
14383 |
Keywords |
SSPD, SNSPD applications, quantum key distribution, QKD |
Abstract |
Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1104 |
Permanent link to this record |
|
|
|
Author |
Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. |
Title |
Superconducting NbN-nanowire single-photon detectors capable of photon number resolving |
Type |
Conference Article |
Year |
2008 |
Publication |
Supercond. News Forum |
Abbreviated Journal |
Supercond. News Forum |
Volume |
|
Issue |
|
Pages |
|
Keywords |
PNR SSPD, SNSPD |
Abstract |
We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 |
Approved |
no |
Call Number |
RPLAB @ sasha @ korneevsuperconducting |
Serial |
1046 |
Permanent link to this record |
|
|
|
Author |
Sidorova, Maria V.; Divochiy, Alexander V.; Vakhtomin, Yury B.; Smirnov, Konstantin V. |
Title |
Ultrafast superconducting single-photon detector with a reduced active area coupled to a tapered lensed single-mode fiber |
Type |
Journal Article |
Year |
2015 |
Publication |
J. Nanophoton. |
Abbreviated Journal |
|
Volume |
9 |
Issue |
1 |
Pages |
093051 |
Keywords |
SSPD, SNSPD |
Abstract |
This paper presents an ultrafast niobium nitride (NbN) superconducting single-photon detector (SSPD) with an active area of 3×3 μm2 that offers better timing performance metrics than the previous SSPD with an active area of 7×7 μm2. The improved SSPD demonstrates a record timing jitter (<25 ps), an ultrashort recovery time (<2 ns), an extremely low dark count rate, and a high detection efficiency in a wide spectral range from visible part to near infrared. The record parameters were obtained due to the development of a new technique providing effective optical coupling between a detector with a reduced active area and a standard single-mode telecommunication fiber. The advantages of the new approach are experimentally confirmed by taking electro-optical measurements. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1934-2608 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
10.1117/1.JNP.9.093051 |
Approved |
no |
Call Number |
RPLAB @ sasha @ |
Serial |
1052 |
Permanent link to this record |
|
|
|
Author |
Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. |
Title |
Quantum key distribution over 300 |
Type |
Conference Article |
Year |
2014 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
9440 |
Issue |
|
Pages |
1F (1 to 9) |
Keywords |
SSPD, SNSPD applicatins, quantum key distribution, QKD |
Abstract |
We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Orlikovsky, A. A. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
International Conference on Micro- and Nano-Electronics |
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ ozhegov2014quantum |
Serial |
1048 |
Permanent link to this record |