Records |
Author |
Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. |
Title |
Superconducting single photon nanowire detectors development for IR and THz applications |
Type |
Journal Article |
Year |
2008 |
Publication |
J. Low Temp. Phys. |
Abbreviated Journal |
J. Low Temp. Phys. |
Volume |
151 |
Issue |
1-2 |
Pages |
591-596 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0022-2291 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1244 |
Permanent link to this record |
|
|
|
Author |
Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A. |
Title |
High resolution optical time-domain reflectometry using superconducting single-photon detectors |
Type |
Conference Article |
Year |
2012 |
Publication |
Frontiers in Opt. 2012/Laser Sci. XXVIII |
Abbreviated Journal |
Frontiers in Opt. 2012/Laser Sci. XXVIII |
Volume |
|
Issue |
|
Pages |
Fw3a.39 |
Keywords |
SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors |
Abstract |
We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Optical Society of America |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1237 |
Permanent link to this record |
|
|
|
Author |
Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y. |
Title |
Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors |
Type |
Journal Article |
Year |
2015 |
Publication |
Sci. Rep. |
Abbreviated Journal |
|
Volume |
5 |
Issue |
|
Pages |
14383 |
Keywords |
SSPD, SNSPD applications, quantum key distribution, QKD |
Abstract |
Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1104 |
Permanent link to this record |
|
|
|
Author |
McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. |
Title |
Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection |
Type |
Journal Article |
Year |
2013 |
Publication |
Opt. Express |
Abbreviated Journal |
Opt. Express |
Volume |
21 |
Issue |
7 |
Pages |
8904-8915 |
Keywords |
SSPD, SNSPD, lidar, SSPD applications, SNSPD applications |
Abstract |
This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1053 |
Permanent link to this record |
|
|
|
Author |
Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W. |
Title |
Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector |
Type |
Journal Article |
Year |
2016 |
Publication |
Rev. Sci. Instrum. |
Abbreviated Journal |
|
Volume |
87 |
Issue |
|
Pages |
053117 (1 to 5) |
Keywords |
SSPD, SNSPD, TCSPC, jitter |
Abstract |
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1077 |
Permanent link to this record |