Records |
Author |
Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N. |
Title |
Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures |
Type |
Abstract |
Year |
2009 |
Publication |
Proc. Progress In Electromagnetics Research Symp. |
Abbreviated Journal |
Proc. Progress In Electromagnetics Research Symp. |
Volume |
|
Issue |
|
Pages |
863-864 |
Keywords |
SSPD, SNSPD |
Abstract |
The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Moscow, Russia |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ smirnovsession |
Serial |
1050 |
Permanent link to this record |
|
|
|
Author |
McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. |
Title |
Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection |
Type |
Journal Article |
Year |
2013 |
Publication |
Opt. Express |
Abbreviated Journal |
Opt. Express |
Volume |
21 |
Issue |
7 |
Pages |
8904-8915 |
Keywords |
SSPD, SNSPD, lidar, SSPD applications, SNSPD applications |
Abstract |
This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1053 |
Permanent link to this record |
|
|
|
Author |
Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A. |
Title |
Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors |
Type |
Journal Article |
Year |
2009 |
Publication |
Eur. Phys. J. Appl. Phys. |
Abbreviated Journal |
|
Volume |
47 |
Issue |
|
Pages |
10701 |
Keywords |
SSPD, SNSPD |
Abstract |
We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ alex_kazakov @ |
Serial |
1062 |
Permanent link to this record |
|
|
|
Author |
Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W. |
Title |
Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector |
Type |
Journal Article |
Year |
2016 |
Publication |
Rev. Sci. Instrum. |
Abbreviated Journal |
|
Volume |
87 |
Issue |
|
Pages |
053117 (1 to 5) |
Keywords |
SSPD, SNSPD, TCSPC, jitter |
Abstract |
Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1077 |
Permanent link to this record |
|
|
|
Author |
Gupta, D.; Kadin, A. M. |
Title |
Single-photon-counting hotspot detector with integrated RSFQ readout electronics |
Type |
Journal Article |
Year |
1999 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
|
Volume |
9 |
Issue |
2 |
Pages |
4487-4490 |
Keywords |
RSFQ, SSPD, SNSPD |
Abstract |
Absorption of an infrared photon in an ultrathin film (such as 10-nm NbN) creates a localized nonequilibrium hotspot on the submicron length scale and sub-ns time scale. If a strip /spl sim/1 /spl mu/m wide is biased in the middle of the superconducting transition, this hotspot will lead to a resistance pulse with amplitude proportional to the energy of the incident photon. This resistance pulse, in turn, can be converted to a current pulse and inductively coupled to a SQUID amplifier with a digitized output, operating at 4 K or above. A preliminary design analysis indicates that this data can be processed on-chip, using ultrafast RSFQ digital circuits, to obtain a sensitive infrared detector for wavelengths up to 10 /spl mu/m and beyond, with bandwidth of 1 GHz, that counts individual photons and measures their energy with 25 meV resolution. This proposed device combines the speed of a hot-electron bolometer with the single-photon-counting ability of a transition-edge microcalorimeter, to obtain an infrared detector with sensitivity, speed, and spectral selectivity that are unmatched by any alternative technology. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1080 |
Permanent link to this record |