|   | 
Details
   web
Records
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue 3 Pages B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0740-3224 ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N.
Title Thermal properties of NbN single-photon detectors Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 10 Issue 6 Pages 064063 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1226
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Lubenchenko, A. V.; Morozov, P. V.; Shurkaeva, I. V.; Smirnov, K. V.
Title Influence of sputtering parameters on the main characteristics of ultra-thin vanadium nitride films Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051030
Keywords SSPD, SNSPD, VN
Abstract We researched the relation between deposition and ultra-thin VN films parameters. To conduct the experimental study we varied substrate temperature, Ar and N2 partial pressures and deposition rate. The study allowed us to obtain the films with close to the bulk values transition temperatures and implement such samples in order to fabricate superconducting single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1228
Permanent link to this record
 

 
Author Romanov, N. R.; Zolotov, P. I.; Vakhtomin, Y. B.; Divochiy, A. V.; Smirnov, K. V.
Title Electron diffusivity measurements of VN superconducting single-photon detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051032
Keywords SSPD, SNSPD, VN
Abstract The research of ultrathin vanadium nitride (VN) films as a promising candidate for superconducting single-photon detectors (SSPD) is presented. The electron diffusivity measurements are performed for such devices. Devices that were fabricated out from 9.9 nm films had diffusivity coefficient of 0.41 cm2/s and from 5.4 nm – 0.54 cm2/s. Obtained values are similar to other typical SSPD materials. The diffusivity that increases along with decreasing of the film thickness is expected to allow fabrication of the devices with improved characteristics. Fabricated VN SSPDs showed prominent single-photon response in the range 0.9-1.55 µm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number Serial 1229
Permanent link to this record
 

 
Author Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
Title Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range Type Conference Article
Year 2018 Publication Proc. AIP Conf. Abbreviated Journal
Volume 1936 Issue 1 Pages 020019
Keywords NbN PNR SSPD, SNSPD
Abstract We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition (up) Conference
Notes Approved no
Call Number doi:10.1063/1.5025457 Serial 1231
Permanent link to this record