Records |
Author |
Goltsman, Gregory |
Title |
Superconducting thin film nanostructures as terahertz and infrared heterodyne and direct detectors |
Type |
Conference Article |
Year |
2017 |
Publication |
16th ISEC |
Abbreviated Journal |
16th ISEC |
Volume |
|
Issue |
|
Pages |
Th-I-QTE-03 (1 to 3) |
Keywords |
waveguide SSPD, SNSPD |
Abstract |
We present our recent achievements in the development of superconducting nanowire single-photon detectors (SNSPDs) integrated with optical waveguides on a chip. We demonstrate both single-photon counting with up to 90% on-chipquantum-efficiency (OCDE), and the heterodyne mixing with a close to the quantum limit sensitivity at the telecommunication wavelength using single device. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
IEEE/CSC & ESAS Superconductivity News Forum |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1745 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. |
Title |
Ultrafast superconducting single-photon detector |
Type |
Journal Article |
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
J. Modern Opt. |
Volume |
56 |
Issue |
15 |
Pages |
1670-1680 |
Keywords |
SSPD, SNSPD |
Abstract |
The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ akorneev @ |
Serial |
607 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. |
Title |
Nano-structured superconducting single-photon detectors |
Type |
Journal Article |
Year |
2004 |
Publication |
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Abbreviated Journal |
|
Volume |
520 |
Issue |
1-3 |
Pages |
527-529 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0168-9002 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1495 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. |
Title |
Advanced nanostructured optical NbN single-photon detector operated at 2.0 K |
Type |
Conference Article |
Year |
2005 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
5732 |
Issue |
|
Pages |
520-529 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as 30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was 20% and decreased exponentially with the wavelength reaching 0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Spie |
Place of Publication |
|
Editor |
Razeghi, M.; Brown, G.J. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
Quantum Sensing and Nanophotonic Devices II |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1478 |
Permanent link to this record |
|
|
|
Author |
Goltsman, G.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. |
Title |
Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors |
Type |
Conference Article |
Year |
2018 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
Volume |
190 |
Issue |
|
Pages |
02004 (1 to 2) |
Keywords |
waveguide SSPD, SNSPD |
Abstract |
We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1320 |
Permanent link to this record |