Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
Records | |||||
---|---|---|---|---|---|
Author | Kerman, A. J.; Dauler, E. A.; Keicher, W. E.; Yang, J. K. W.; Berggren, K. K.; Gol’tsman, G.; Voronov, B. | ||||
Title | Kinetic-inductance-limited reset time of superconducting nanowire photon counters | Type | Journal Article | ||
Year | 2006 | Publication | Appl. Phys. Lett. | Abbreviated Journal | Appl. Phys. Lett. |
Volume | 88 | Issue | 11 | Pages | 111116 (1 to 3) |
Keywords | NbN SSPD, SNSPD | ||||
Abstract | We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time. The authors acknowledge D. Oates and W. Oliver (MIT Lincoln Laboratory), S.W. Nam, A. Miller, and R. Hadfield (NIST) and R. Sobolewski, A. Pearlman, and A. Verevkin (University of Rochester) for helpful discussions and technical assistance. This work made use of MIT’s shared scanning-electron-beam-lithography facility in the Research Laboratory of Electronics. This work is sponsored by the United States Air Force under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0003-6951 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1453 | |||
Permanent link to this record | |||||
Author | Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. | ||||
Title | Picosecond superconducting single-photon optical detector | Type | Journal Article | ||
Year | 2001 | Publication | Appl. Phys. Lett. | Abbreviated Journal | Appl. Phys. Lett. |
Volume | 79 | Issue | 6 | Pages | 705-707 |
Keywords | NbN SSPD, SNSPD | ||||
Abstract | We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0003-6951 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1543 | |||
Permanent link to this record | |||||
Author | Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D. | ||||
Title | Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber | Type | Journal Article | ||
Year | 2021 | Publication | Appl. Phys. Lett. | Abbreviated Journal | Appl. Phys. Lett. |
Volume | 118 | Issue | 18 | Pages | 181103 |
Keywords | NbN SSPD, SNSPD | ||||
Abstract | High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level. We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0003-6951 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1770 | |||
Permanent link to this record | |||||
Author | Lindgren, M.; Currie, M.; Zeng, W.-S.; Sobolewski, R.; Cherednichenko, S.; Voronov, B.; Gol'tsman, G. N. | ||||
Title | Picosecond response of a superconducting hot-electron NbN photodetector | Type | Journal Article | ||
Year | 1998 | Publication | Appl. Supercond. | Abbreviated Journal | Appl. Supercond. |
Volume | 6 | Issue | 7-9 | Pages | 423-428 |
Keywords | NbN SSPD, SNSPD | ||||
Abstract | The ps optical response of ultrathin NbN photodetectors has been studied by electro-optic sampling. The detectors were fabricated by patterning ultrathin (3.5 nm thick) NbN films deposited on sapphire by reactive magnetron sputtering into either a 5×10 μm2 microbridge or 25 1 μm wide, 5 μm long strips connected in parallel. Both structures were placed at the center of a 4 mm long coplanar waveguide covered with Ti/Au. The photoresponse was studied at temperatures ranging from 2.15 K to 10 K, with the samples biased in the resistive (switched) state and illuminated with 100 fs wide laser pulses at 395 nm wavelength. At T=2.15 K, we obtained an approximately 100 ps wide transient, which corresponds to a NbN detector response time of 45 ps. The photoresponse can be attributed to the nonequilibrium electron heating effect, where the incident radiation increases the temperature of the electron subsystem, while the phonons act as the heat sink. The high-speed response of NbN devices makes them an excellent choice for an optoelectronic interface for superconducting digital circuits, as well as mixers for the terahertz regime. The multiple-strip detector showed a linear dependence on input optical power and a responsivity =3.9 V/W. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0964-1807 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1584 | |||
Permanent link to this record | |||||
Author | Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W. | ||||
Title | Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits | Type | Miscellaneous | ||
Year | 2016 | Publication | arXiv | Abbreviated Journal | arXiv |
Volume | Issue | Pages | 1-20 | ||
Keywords | waiveguide SSPD, SNSPD, imaging | ||||
Abstract | The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | Serial | 1334 | |||
Permanent link to this record |