toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Somani, S.; Kasapi, S.; Wilsher, K.; Lo, W.; Sobolewski, R.; Gol’tsman, G. url  doi
openurl 
  Title New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect Type Journal Article
  Year 2001 Publication J. Vac. Sci. Technol. B Abbreviated Journal J. Vac. Sci. Technol. B  
  Volume 19 Issue 6 Pages 2766-2769  
  Keywords NbN SSPD, SNSPD  
  Abstract A novel superconducting single-photon detector (SSPD), intrinsically capable of high quantum efficiency (up to 20%) over a wide spectral range (ultraviolet to infrared), with low dark counts (<1 cps), and fast (<40 ps) timing resolution, is described. This SSPD has been used to perform timing measurements on complementary metal–oxide–semiconductor integrated circuits (ICs) by detecting the infrared light emission from switching transistors. Measurements performed from the backside of a 0.13 μm geometry flip–chip IC are presented. Other potential applications for this detector are in telecommunications, quantum cryptography, biofluorescence, and chemical kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734211X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1542  
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N. url  openurl
  Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 462-468  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1539  
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
  Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 15 Issue 12 Pages 1689-1692  
  Keywords NbN SSPD, SNSPD, QE, jitter, dark counts  
  Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1533  
Permanent link to this record
 

 
Author Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman url  openurl
  Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
  Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM  
  Volume Issue Pages  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 8th IUMRS International Conference on Electronic Materials  
  Notes Approved no  
  Call Number Serial (down) 1532  
Permanent link to this record
 

 
Author Sobolewski, Roman; Xu, Ying; Zheng, Xuemei; Williams, Carlo; Zhang, Jin; Verevkin, Aleksandr; Chulkova, Galina; Korneev, Alexander; Lipatov, Andrey; Okunev, Oleg; Smirnov, Konstantin; Gol'tsman, Gregory N. url  openurl
  Title Spectral sensitivity of the NbN single-photon superconducting detector Type Journal Article
  Year 2002 Publication IEICE Trans. Electron. Abbreviated Journal IEICE Trans. Electron.  
  Volume E85-C Issue 3 Pages 797-802  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1531  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: