Records |
Author |
Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N. |
Title |
IR single-photon receiver based on ultrathin NbN superconducting film |
Type |
Journal Article |
Year |
2013 |
Publication |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
5 |
Pages |
|
Keywords |
SSPD, SNSPD |
Abstract |
We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
Russian |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
8 pages |
Approved |
no |
Call Number |
RPLAB @ sasha @ korneevir |
Serial |
1043 |
Permanent link to this record |
|
|
|
Author |
Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N. |
Title |
Superconducting single-photon detector made of MoSi film |
Type |
Journal Article |
Year |
2014 |
Publication |
Supercond. Sci. Technol. |
Abbreviated Journal |
Supercond. Sci. Technol. |
Volume |
27 |
Issue |
9 |
Pages |
095012 |
Keywords |
SSPD, SNSPD |
Abstract |
We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
IOP Publishing |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0953-2048 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ korneeva2014superconducting |
Serial |
1044 |
Permanent link to this record |
|
|
|
Author |
Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G. |
Title |
Superconducting NbN-nanowire single-photon detectors capable of photon number resolving |
Type |
Conference Article |
Year |
2008 |
Publication |
Supercond. News Forum |
Abbreviated Journal |
Supercond. News Forum |
Volume |
|
Issue |
|
Pages |
|
Keywords |
PNR SSPD, SNSPD |
Abstract |
We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 |
Approved |
no |
Call Number |
RPLAB @ sasha @ korneevsuperconducting |
Serial |
1046 |
Permanent link to this record |
|
|
|
Author |
Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. |
Title |
Quantum key distribution over 300 |
Type |
Conference Article |
Year |
2014 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
9440 |
Issue |
|
Pages |
1F (1 to 9) |
Keywords |
SSPD, SNSPD applicatins, quantum key distribution, QKD |
Abstract |
We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Orlikovsky, A. A. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
International Conference on Micro- and Nano-Electronics |
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ ozhegov2014quantum |
Serial |
1048 |
Permanent link to this record |
|
|
|
Author |
Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N. |
Title |
Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures |
Type |
Abstract |
Year |
2009 |
Publication |
Proc. Progress In Electromagnetics Research Symp. |
Abbreviated Journal |
Proc. Progress In Electromagnetics Research Symp. |
Volume |
|
Issue |
|
Pages |
863-864 |
Keywords |
SSPD, SNSPD |
Abstract |
The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
Moscow, Russia |
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
RPLAB @ sasha @ smirnovsession |
Serial |
1050 |
Permanent link to this record |