toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A. doi  openurl
  Title Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
  Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 80 Issue 25 Pages 4687-4689  
  Keywords NbN SSPD, SNSPD, QE  
  Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 331  
Permanent link to this record
 

 
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A. doi  openurl
  Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
  Year 2009 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal  
  Volume 47 Issue Pages 10701  
  Keywords SSPD, SNSPD  
  Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1062  
Permanent link to this record
 

 
Author Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y. doi  openurl
  Title Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal  
  Volume 5 Issue Pages 14383  
  Keywords SSPD, SNSPD applications, quantum key distribution, QKD  
  Abstract Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1104  
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Shcherbatenko, M.; Lobanov, Y.; Ozhegov, R.; Korneev, A.; Kaurova, N.; Voronov, B.; Pernice, W.; Gol'tsman, G. doi  openurl
  Title On-chip coherent detection with quantum limited sensitivity Type Journal Article
  Year 2017 Publication Sci Rep Abbreviated Journal Sci Rep  
  Volume 7 Issue 1 Pages 4812  
  Keywords waveguide, SSPD, SNSPD  
  Abstract While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.  
  Address National Research University Higher School of Economics, Moscow, 101000, Russia. ggoltsman@hse.ru  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28684752; PMCID:PMC5500578 Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1129  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: