Records |
Author |
Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M. |
Title |
Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications |
Type |
Conference Article |
Year |
2003 |
Publication |
Proc. SPIE |
Abbreviated Journal |
Proc. SPIE |
Volume |
5105 |
Issue |
|
Pages |
160-170 |
Keywords |
NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices |
Abstract |
We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
SPIE |
Place of Publication |
|
Editor |
Donkor, E.; Pirich, A.R.; Brandt, H.E. |
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
Quantum Information and Computation |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1514 |
Permanent link to this record |
|
|
|
Author |
Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R. |
Title |
Fabrication of nanostructured superconducting single-photon detectors |
Type |
Journal Article |
Year |
2003 |
Publication |
IEEE Trans. Appl. Supercond. |
Abbreviated Journal |
IEEE Trans. Appl. Supercond. |
Volume |
13 |
Issue |
2 |
Pages |
192-195 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1558-2515 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1515 |
Permanent link to this record |
|
|
|
Author |
Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. |
Title |
Time delay of resistive-state formation in superconducting stripes excited by single optical photons |
Type |
Journal Article |
Year |
2003 |
Publication |
Phys. Rev. B |
Abbreviated Journal |
Phys. Rev. B |
Volume |
67 |
Issue |
13 |
Pages |
132508 (1 to 4) |
Keywords |
NbN SSPD, SNSPD |
Abstract |
We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0163-1829 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1519 |
Permanent link to this record |
|
|
|
Author |
Slysz, W.; Wegrzecki, M.; Papis, E.; Gol'tsman, G. N.; Verevkin, A.; Sobolewski, R. |
Title |
A method of optimization of the NbN superconducting single-photon detector |
Type |
Miscellaneous |
Year |
2004 |
Publication |
INIS |
Abbreviated Journal |
INIS |
Volume |
36 |
Issue |
27 |
Pages |
1-2 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
|
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
5-th International Symposium Ion Implantation and Other Applications of Ions and Electrons, ION |
Notes |
Reference num. 36060124 |
Approved |
no |
Call Number |
|
Serial |
1485 |
Permanent link to this record |
|
|
|
Author |
Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gol'tsman, G. N.; Verevkin, M.; Sobolewski, R. |
Title |
NbN superconducting single-photon detectors coupled with a communication fiber |
Type |
Miscellaneous |
Year |
2004 |
Publication |
INIS |
Abbreviated Journal |
INIS |
Volume |
37 |
Issue |
2 |
Pages |
1-2 |
Keywords |
NbN SSPD, SNSPD |
Abstract |
|
Address |
Stare Jablonki, Poland |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
8-th Electron Technology Conference ELTE |
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1486 |
Permanent link to this record |