toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Gazaliev, A.; Moskotin, M.; Kaurova, N.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Carbon nanotube based schottky diodes as uncooled terahertz radiation detectors Type Journal Article
  Year 2018 Publication Phys. Status Solidi B Abbreviated Journal Phys. Status Solidi B  
  Volume 255 Issue 1 Pages (down) 1700227 (1 to 6)  
  Keywords carbon nanotube schottky diodes, CNT  
  Abstract Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room‐temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi‐metallic (bandgap of few meV) single‐walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 V W−1, while quasi‐metallic CNTs are shown to operate up to 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1321  
Permanent link to this record
 

 
Author Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A. url  doi
openurl 
  Title Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
  Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.  
  Volume 21 Issue 9 Pages (down) 97002 (1 to 5)  
  Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology  
  Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.  
  Address Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-3668 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27626901 Approved no  
  Call Number Serial 1335  
Permanent link to this record
 

 
Author Tol, J. van; Brunel, L.-C.; Wylde, R. J. openurl 
  Title A quasioptical transient electron spin resonance spectrometer operating at 120 and 240 GHz Type Journal Article
  Year 2005 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 76 Issue 7 Pages (down) 074101 (1 to 8)  
  Keywords Schottky, noise temperature  
  Abstract A new multifrequency quasioptical electron paramagnetic resonance (EPR) spectrometer is described. The superheterodyne design with Schottky diode mixer/detectors enables fast detection with subnanosecond time resolution. Optical access makes it suitable for transient EPR (TR-EPR) at 120 and 240 GHz. These high frequencies allow for an accurate determination of small g-tensor anisotropies as are encountered in excited triplet states of organic molecules like porphyrins and fullerenes. The measured concentration sensitivity for continuous-wave (cw) EPR at 240 GHz and at room temperature without cavity is 1013 spins/cm3 (15 nM) for a 1 mT linewidth and a 1 Hz bandwidth. With a Fabry-Perot cavity and a sample volume of 30 nl, the sensitivity at 240 GHz corresponds to [approximate]3×109 spins for a 1 mT linewidth. The spectrometer's performance is illustrated with applications of transient EPR of excited triplet states of organic molecules, as well as cw EPR of nitroxide reference systems and a thin film of a colossal magnetoresistance material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Actually, noise spectral density is given (3e-19 W/Hz) Approved no  
  Call Number Serial 588  
Permanent link to this record
 

 
Author Shurakov, A.; Mikhailov, D.; Belikov, I.; Kaurova, N.; Zilberley, T.; Prikhodko, A.; Voronov, B.; Vasil’evskii, I.; Goltsman, G. url  doi
openurl 
  Title Planar Schottky diode with a Γ-shaped anode suspended bridge Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages (down) 012154  
  Keywords Schottky diode, GaAs, InP substrate  
  Abstract In this paper we report on the fabrication of a planar Schottky diode utilizing a Г-shaped anode suspended bridge. The bridge maintains transition between the top and bottom level planes of a 1.4 µm thick GaAs mesa. To implement the profile of a suspended bridge and inward tilt of a mesa wall adjacent to it, we make use of an anisotropic etching of gallium arsenide. The geometry proposed enables the fabrication of a diode with mesa of an arbitrary thickness to mitigate AC losses in the diode layered structure at terahertz frequencies of interest. For frequencies beyond 1 THz, it is also beneficial to use the geometry for the implementation of n-GaAs/n-InGaAs heterojunction Schottky diodes grown on InP substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1152  
Permanent link to this record
 

 
Author Archer, J. W. openurl 
  Title Multiple mixer, cryogenic receiver for 200-350 GHz Type Journal Article
  Year 1983 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 54 Issue 10 Pages (down) 1371-1376  
  Keywords Schottky, mixer, noise temperature  
  Abstract This paper describes a new 200–350-GHz dual polarization heterodyne radiometer receiver for radio astronomy applications. The receiver incorporates four pairs of cryogenically cooled Schottky-barrier diode single-ended mixers, each pair covering a 30–40-GHz subband of the full operating band. Each mixer, with its IF amplifier, is mounted in an individual cryogenic subdewar comprising a separate vcuum chamber and a cold stage, which may be readily thermally connected to or disconnected from the main refrigerator by a novel mechanical heat switch. A dual polarization LO diplexer is mounted on a rotary table above the subdewars. For band selection, the two diplexer rf output ports may be positioned over any of the four pairs of subdewars. The SSB receiver noise temperatues achieved are less than 500 K between 200 and 240 GHz, less than 800 K between 245 and 275 GHz and 1500 K at 345 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 589  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: