|   | 
Details
   web
Records
Author Manus, M. K. Mc; Kash, J. A.; Steen, S. E.; Polonsky, S.; Tsang, J.C.; Knebel, D. R.; Huott, W.
Title PICA: Backside failure analysis of CMOS circuits using picosecond imaging circuit analysis Type Journal Article
Year 2000 Publication (up) Microelectronics Reliability Abbreviated Journal Microelectronics Reliability
Volume 40 Issue Pages 1353-1358
Keywords SSPD, CMOS testing
Abstract Normal operation of complementary metal-oxide semiconductor (CMOS) devices entails the emission of picosecond pulses of light, which can be used to diagnose circuit problems. The pulses that are observed from submicron sized field effect transistors (FETs) are synchronous with logic state switching. Picosecond Imaging Circuit Analysis (PICA), a new optical imaging technique combining imaging with timing, spatially resolves individual devices at the 0.5 micron level and switching events on a 10 picosecond timescale. PICA is used here for the diagnostics of failures on two VLSI microprocessors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1054
Permanent link to this record
 

 
Author Miller, Aaron J.; Lita, Adriana E.; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M.; Nam, Sae Woo
Title Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent Type Journal Article
Year 2011 Publication (up) Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 10 Pages 9102-9110
Keywords TES
Abstract We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 666
Permanent link to this record
 

 
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver
Title Measuring the quantum nature of light with a single source and a single detector Type Journal Article
Year 2012 Publication (up) Phys. Rev. A Abbreviated Journal
Volume 86 Issue 5 Pages 053814
Keywords SSPD, SNSPD, saturation count rates, dead time, dynamic range
Abstract An elementary experiment in optics consists of a light source and a detector. Yet, if the source generates nonclassical correlations such an experiment is capable of unambiguously demonstrating the quantum nature of light. We realized such an experiment with a defect center in diamond and a superconducting detector. Previous experiments relied on more complex setups, such as the Hanbury Brown and Twiss configuration, where a beam splitter directs light to two photodetectors, creating the false impression that the beam splitter is a fundamentally required element. As an additional benefit, our results provide a simplification of the widely used photon-correlation techniques.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1089
Permanent link to this record
 

 
Author Gershenzon, E. M.; Goltsman, G. N.; Orlov, L.
Title Investigation of population and ionization of donor excited states in Ge Type Conference Article
Year 1976 Publication (up) Physics of Semiconductors Abbreviated Journal Physics of Semiconductors
Volume Issue Pages 631-634
Keywords Ge, donor excited states
Abstract
Address Amsterdam
Corporate Author Thesis
Publisher North-Holland Publishing Co. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1732
Permanent link to this record
 

 
Author Gorokhov, G.; Bychanok, D.; Gayduchenko, I.; Rogov, Y.; Zhukova, E.; Zhukov, S.; Kadyrov, L.; Fedorov, G.; Ivanov, E.; Kotsilkova, R.; Macutkevic, J.; Kuzhir, P.
Title THz spectroscopy as a versatile tool for filler distribution diagnostics in polymer nanocomposites Type Journal Article
Year 2020 Publication (up) Polymers (Basel) Abbreviated Journal Polymers (Basel)
Volume 12 Issue 12 Pages 3037 (1 to 14)
Keywords THz spectroscopy; nanocomposites, percolation threshold, time-domain spectroscopy, time-domain spectrometer, TDS
Abstract Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes. The THz peak of permittivity's imaginary part predicted by the applied model was experimentally shown for GNP-containing composites both below and above the percolation threshold. The physical nature of the peak was explained by the impact on filler particles excluded from the percolation network due to the peculiarities of filler distribution. Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.
Address Institute of Photonics, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4360 ISBN Medium
Area Expedition Conference
Notes PMID:33353036; PMCID:PMC7767186 Approved no
Call Number Serial 1780
Permanent link to this record