|   | 
Details
   web
Records
Author Gershenzon, E. M.; Gol'tsman, G. N.; Karasik, B. S.; Semenov, A. D.
Title Measurement of the energy gap in the compound YBaCu3O9-δ on the basis of the IR absorption spectrum Type Journal Article
Year (up) 1987 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 46 Issue 5 Pages 237-238
Keywords YBCO HTS detectors
Abstract For the first time the long-wave infrared absorption spectrum has been measured by means of the bolometric effect and energy gap for high-temperature superconducting ceramics YBa/sub 2/Cu/sub 3/O/sub 9-delta/ has been determined from absorption threshold. 2delta/kT/sub c/ value is equal to 0.6.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1703
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Mechanism of picosecond response of granular YBaCuO films to electromagnetic radiation Type Journal Article
Year (up) 1990 Publication Solid State Communications Abbreviated Journal Solid State Communications
Volume 76 Issue 4 Pages 493-497
Keywords YBCO HTS detectors
Abstract The ultrafast mechanisms of radiation detection in granular YBaCuO films are studied in the wide wavelength range from millimeter to near infrared. With the rise of radiation frequency the Josephson detection at the grain boundary weak links is replaced by electron heating into the grains. This change occurs in the submillimeter wavelength range. Electron-phonon relaxation time τeph is determined by direct measurements and analyses quasistationary electron heating. Temperature dependence of τeph at T ≤ 40 K was found to be τeph ∼ T−1. The results show that detectors with the response time of few picoseconds at nitrogen temperature are attainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1685
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D.
Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
Year (up) 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal Proc. European Conf. High-Tc Thin Films and Single Crystals
Volume Issue Pages 457-462
Keywords YBCO HTS detectors
Abstract Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989
Notes Approved no
Call Number Serial 1695
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Semenov, A. D.; Sergeev, A. V.
Title Processes of electron-phonon interaction in thin YBaCuO films Type Journal Article
Year (up) 1991 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 185-189 Issue Pages 1371-1372
Keywords YBCO HTS detectors
Abstract The ultrafast voltage response of YBaCuO films to laser radiation is studied and compared with previously investigated quasiparicles response to radiation of submillimeter wavelength range. Voltage shift under the visible light radiation has two components. Picosecond response realized as suppression superconductivity by nonequilibrium excess quasiparticles, response time is determined by quasiparticles recombination rate. Nanosecond response is probably due to bolometric effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1676
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Mechanism of picosecond response of granular YBaCuO films to electromagnetic radiation Type Journal Article
Year (up) 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 1321-1324
Keywords YBCO HTS detectors
Abstract Ultrafast mechanisms of radiation detection in granular YBaCuO films are studied in the wide wavelength range from millimeter waves to near infrared. With an increase in radiation frequency, the Josephson detection at the grain-boundary weak links is replaced by electron heating into the grains. This change occurs in the submillimeter wavelength range. The electron-phonon relaxation time tau /sub eph/ is determined from direct measurements, quasi-stationary electron heating measurements, and the frequency dependence of the current at which maximum voltage shift is observed. The temperature dependence of tau /sub eph/ at T<or=40 K was found to be tau /sub eph/ approximately T/sup -1/. The results show that detectors with a response time of a few picoseconds at nitrogen temperature are attainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1679
Permanent link to this record