|   | 
Details
   web
Records
Author Sergeev, A.; Semenov, A.; Trifonov, V.; Karasik, B.; Gol'tsman, G.; Gershenzon, E.
Title Heat transfer in YBaCuO thin film/sapphire substrate system Type Journal Article
Year 1994 Publication J. Supercond. Abbreviated Journal J. Supercond.
Volume 7 Issue 2 Pages 341-344
Keywords YBCO films
Abstract The thermal boundary resistance at the YBaCuO thin film/Al2O3 substrate interface was investigated. The transparency for thermal phonons incident on the interface as well as for phonons moving from the substrate was determined. We have measured a transient voltage response of current-biased films to continuously modulated radiation. The observed knee in the modulation frequency dependence of the response reflects the crossover from the diffusion regime to the contact resistance regime of the heat transfer across the interface. The values of transparency were independently deduced both from the phonon escape time and from the time of phonon return to the film which were identified with peculiarities in the frequency dependence. The results are much more consistent with the acoustic mismatch theory than the diffuse mismatch model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0896-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1647
Permanent link to this record
 

 
Author Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gol’tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.
Title Thermal boundary resistance at YBaCuO film-substrate interface Type Conference Article
Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences
Volume 112 Issue Pages 405-406
Keywords YBCO films
Abstract The nanosecond voltage response of YBaCuo films on Al2O3, MgO and ZrO2 substrates to electromagnetic radiation of millimeter and visible ranges has been investigated. The analysis of experimental conditions for Al2O3 and MgO substrates shows that the resistance change is monitored by the Kapitza boundary shift of temperature during the temporal interval ~ 100 ns limited by the time of phonon return from a substrate into a film. The observed exponential voltage decay is described by the phonon escape time which is proportional to the film thickness and is weakly temperature dependent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992
Notes Approved no
Call Number Serial 1665
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.
Volume 49 Issue 13 Pages 9091-9096
Keywords YBCO films
Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes PMID:10009690 Approved no
Call Number Serial 1648
Permanent link to this record