|   | 
Details
   web
Records
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D.
Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
Year 2015 Publication Semicond. Abbreviated Journal Semicond.
Volume 49 Issue 13 Pages 1749-1753
Keywords carbon nanotubes, CNT detectors
Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1783
Permanent link to this record
 

 
Author Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P.
Title Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors Type Journal Article
Year 2015 Publication Carbon Abbreviated Journal Carbon
Volume 87 Issue Pages 330-337
Keywords carbon nanotubes, CNT detectors, field effect transistors, FET
Abstract Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1778
Permanent link to this record
 

 
Author Eletskii, A. V.; Sarychev, A. K.; Boginskaya, I. A.; Bocharov, G. S.; Gaiduchenko, I. A.; Egin, M. S.; Ivanov, A. V.; Kurochkin, I. N.; Ryzhikov, I. A.; Fedorov, G. E.
Title Amplification of a Raman scattering signal by carbon nanotubes Type Journal Article
Year 2018 Publication Dokl. Phys. Abbreviated Journal Dokl. Phys.
Volume 63 Issue 12 Pages 496-498
Keywords carbon nanotubes, CNT, Raman scattering, RLS
Abstract The effect of Raman scattering (RLS) signal amplification by carbon nanotubes (CNTs) was studied. Single-layered nanotubes were synthesized by the chemical vapor deposition (CVD) method using methane as a carbon-containing gas. The object of study used was water, the Raman spectrum of which is rather well known. Amplification of the Raman scattering signal by several hundred percent was attained in our work. The maximum amplification of a Raman scattering signal was shown to be achieved at an optimal density of nanotubes on a substrate. This effect was due to the scattering and screening of plasmons excited in CNTs by neighboring nanotubes. The amplification mechanism and the possibilities of optimization for this effect were discussed on the basis of the theory of plasmon resonance in carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1028-3358 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1775
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Graphene-based lateral Schottky diodes for detecting terahertz radiation Type Conference Article
Year 2018 Publication Proc. Optical Sensing and Detection V Abbreviated Journal Proc. Optical Sensing and Detection V
Volume 10680 Issue Pages 30-39
Keywords graphene, terahertz radiation, detectors, Schottky diodes, carbon nanotubes, plasma waves
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of graphene field effect transistors of two configurations. The devices of the first type are based on single layer CVD graphene with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes (LSD). The devices of the second type are made in so-called Dyakonov-Shur configuration in which the radiation is coupled through a spiral antenna to source and top electrodes. We show that at 300 K the LSD detector exhibit the room-temperature responsivity from R = 15 V/W at f= 129 GHz to R = 3 V/W at f = 450 GHz. The DS detector responsivity is markedly lower (2 V/W) and practically frequency independent in the investigated range. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Berghmans, F.; Mignani, A.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.2307020 Serial 1306
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 18 Pages 181121 (1 to 5)
Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate
Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1171
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 71
Keywords carbon nanotubes, CNT
Abstract This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1361
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N.
Title Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
Year 2016 Publication Semicond. Abbreviated Journal Semicond.
Volume 50 Issue 12 Pages 1600-1603
Keywords carbon nanotubes, CNT detectors
Abstract Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1776
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1092 Issue Pages 012039 (1 to 4)
Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1302
Permanent link to this record
 

 
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G.
Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 118 Issue 19 Pages 194303
Keywords terahertz detectors, asymmetric carbon nanotubes, CNT
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1169
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Ibragimov, R. A.; Stepanova, T. S.; Gazaliev, A. S.; Vysochanskiy, N. A.; Bobrov, Y. A.; Malovichko, A. M.; Sosnin, I. M.; Bobrinetskiy, I. I.
Title Synthesis of single-walled carbon nanotube networks using monodisperse metallic nanocatalysts encapsulated in reverse micelles Type Journal Article
Year 2016 Publication Chem. Ind. Belgrade Abbreviated Journal Chem. Ind. Belgrade
Volume 70 Issue 1 Pages 1-8
Keywords carbon nanotubes, CNT, reverse micelles
Abstract We report on a method of synthesis of single-walled carbon nanotubes percolated networks on silicon dioxide substrates using monodisperse Co and Ni catalyst. The catalytic nanoparticles were obtained by modified method of reverse micelles of bis-(2-ethylhexyl) sulfosuccinate sodium in isooctane solution that provides the nanoparticle size control in range of 1 to 5 nm. The metallic nanoparticles of Ni and Co were characterized using transmission electron microscopy (TEM) and atomic-force microscopy (AFM). Carbon nanotubes were synthesized by chemical vapor deposition of CH4/H2 composition at temperature 1000 °С on catalysts pre-deposited on silicon dioxide substrate. Before temperature treatment during the carbon nanotube synthesis most of the catalyst material agglomerates due to magnetic forces while during the nanotube growth disintegrates into the separate nanoparticles with narrow diameter distribution. The formed nanotube networks were characterized using AFM, scanning electron microscopy (SEM) and Raman spectroscopy. We find that the nanotubes are mainly single-walled carbon nanotubes with high structural perfection up to 200 μm long with diameters from 1.3 to 1.7 nm consistent with catalyst nanoparticles diameter distribution and independent of its material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0367-598X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1779
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.
Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 741 Issue Pages 012143 (1 to 6)
Keywords carbon nanotubes, CNT
Abstract Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1336
Permanent link to this record
 

 
Author Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol'tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
Title Fully integrated quantum photonic circuit with an electrically driven light source Type Journal Article
Year 2016 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 10 Issue 11 Pages 727-732
Keywords Carbon nanotubes and fullerenes, Integrated optics, Single photons and quantum effects, Waveguide integrated single-photon detector
Abstract Photonic quantum technologies allow quantum phenomena to be exploited in applications such as quantum cryptography, quantum simulation and quantum computation. A key requirement for practical devices is the scalable integration of single-photon sources, detectors and linear optical elements on a common platform. Nanophotonic circuits enable the realization of complex linear optical systems, while non-classical light can be measured with waveguide-integrated detectors. However, reproducible single-photon sources with high brightness and compatibility with photonic devices remain elusive for fully integrated systems. Here, we report the observation of antibunching in the light emitted from an electrically driven carbon nanotube embedded within a photonic quantum circuit. Non-classical light generated on chip is recorded under cryogenic conditions with waveguide-integrated superconducting single-photon detectors, without requiring optical filtering. Because exclusively scalable fabrication and deposition methods are used, our results establish carbon nanotubes as promising nanoscale single-photon emitters for hybrid quantum photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1105
Permanent link to this record
 

 
Author Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G.
Title On chip carbon nanotube tunneling spectroscopy Type Journal Article
Year 2020 Publication Fullerenes, Nanotubes and Carbon Nanostructures Abbreviated Journal
Volume 28 Issue 1 Pages 50-53
Keywords carbon nanotubes, CNT, scanning tunneling microscope, STM
Abstract We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes.
Address
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number doi:10.1080/1536383X.2019.1671365 Serial 1269
Permanent link to this record
 

 
Author Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
Title Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers Type Journal Article
Year 2017 Publication Beilstein J. Nanotechnol. Abbreviated Journal Beilstein J. Nanotechnol.
Volume 8 Issue Pages 38-44
Keywords carbon nanotubes; CNT; infrared; integrated optics devices; nanomaterials
Abstract Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.
Address Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Darmstadt 64287, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286 ISBN Medium
Area Expedition Conference
Notes PMID:28144563; PMCID:PMC5238692 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1109
Permanent link to this record
 

 
Author Pyatkov, Felix; Khasminskaya, Svetlana; Fütterling, Valentin; Fechner, Randy; Słowik, Karolina; Ferrari, Simone; Kahl1, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Flavel, Benjamin S.; Hennrich, Frank; Kappes, Manfred M.; Gol’tsman, Gregory N.; Korneev, Alexander; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P.
Title Carbon nanotubes as exceptional electrically driven on-chip light sources Type Miscellaneous
Year 2016 Publication 2Physics Abbreviated Journal 2Physics
Volume Issue Pages
Keywords carbon nanotubes, CNT
Abstract Carbon nanotubes (CNTs) belong to the most exciting objects of the nanoworld. Typically, around 1 nm in diameter and several microns long, these cylindrically shaped carbon-based structures exhibit a number of exceptional mechanical, electrical and optical characteristics [1]. In particular, they are promising ultra-small light sources for the next generation of optoelectronic devices, where electrical components are interconnected with photonic circuits.

Few years ago, we demonstrated that electically driven CNTs can serve as waveguide-integrated light sources [2]. Progress in the field of nanotube sorting, dielectrophoretical site-selective deposition and efficient light coupling into underlying substrate has made CNTs suitable for wafer-scale fabrication of active hybrid nanophotonic devices [2,3].

Recently we presented a nanotube-based waveguide integrated light emitters with tailored, exceptionally narrow emission-linewidths and short response times [4]. This allows conversion of electrical signals into well-defined optical signals directly within an optical waveguide, as required for future on-chip optical communication. Schematics and realization of this device is shown in Figure 1. The devices were manufactured by etching a photonic crystal waveguide into a dielectric layer following electron beam lithography. Photonic crystals are nanostructures that are also used by butterflies to give the impression of color on their wings. The same principle has been used in this study to select the color of light emitted by the CNT. The precise dimensions of the structure were numerically simulated to tailor the properties of the final device. Metallic contacts in the vicinity to the waveguide were fabricated to provide electrical access to CNT emitters. Finally, CNTs, sorted by structural and electronic properties, were deposited from a solution across the waveguide using dielectrophoresis, which is an electric-field-assisted deposition technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2372-1782 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1219
Permanent link to this record