|   | 
Details
   web
Records
Author Bell, Matthew; Sergeev, Andrei; Goltsman, Gregory; Bird, Jonathan; Verevkin, Aleksandr
Title Transition-edge sensors based on superconducting nanowires Type (up) Abstract
Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume Issue Pages B38.00001
Keywords NbN nanowire TES
Abstract We present our experimental study of superconducting NbN nanowire-based sensor. The responsivity of the sensor is strongly affected by the superconducting transition width of the nanostructure, which, in turn, is determined by the phase slip centers (PCSs) dynamics. The fluctuations and noise properties of the sensor are also discussed, as well as the devices' behavior at high magnetic fields. The ultimate performance of the sensor and prospects of the devices will be discussed, as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1455
Permanent link to this record
 

 
Author Zhizhon, Yan; Majedi, Hamed A.
Title Optoelectronic mixing in the NbN superconducting nanowire single photon detectors Type (up) Conference Article
Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3786 Issue Pages 9
Keywords Optoelectronic devices, microwave superconductivity, nonlinearity, single photon detector, superconductivity, nanowire, optical mixing, microwave mixers, amplitude modulation, intensity modulation.
Abstract In this paper, we present our experimental results on the electrically pumped optoelectronic mixing effect exhibited in a niobium nitride (NbN) superconducting nanowire. The experimental setup in order to test the mixer has been reported in detail. This superconductive nanowire optoelectronic mixer demonstrates photodetection and mixing in an integrated manner. We have explored both effects under a great variety of external conditions, such as temperature and bias current, in order to seek potential ways toward quantum optoelectronic detection and mixing by such nanowire device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 651
Permanent link to this record
 

 
Author Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type (up) Conference Article
Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX
Volume 9750 Issue Pages 135-142
Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter
Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Broquin, J.-E.; Conti, G.N.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1210
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G.
Title Superconducting photon number resolving counter for near infrared applications Type (up) Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713828 (1 to 5)
Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared
Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.818079 Serial 1241
Permanent link to this record
 

 
Author Korneeva, Yuliya; Florya, Irina; Vdovichev, Sergey; Moshkova, Mariya; Simonov, Nikita; Kaurova, Natalia; Korneev, Alexander; Goltsman, Gregory
Title Comparison of hot-spot formation in NbN and MoN thin superconducting films after photon absorption Type (up) Conference Article
Year 2017 Publication IEEE Transactions on Applied Superconductivity Abbreviated Journal IEEE Transactions on Applied Superconductiv
Volume 27 Issue 4 Pages 5
Keywords Thin film devices, Superconducitng photoncounting devices, Nanowire single-photon detectors
Abstract In superconducting single-photon detectors SSPD

the efficiency of local suppression of superconductivity and hotspot

formation is controlled by diffusivity and electron-phonon

interaction time. Here we selected a material, 3.6-nm-thick MoNx

film, which features diffusivity close to those of NbN traditionally

used for SSPD fabrication, but with electron-phonon interaction

time an order of magnitude larger. In MoNx detectors we study

the dependence of detection efficiency on bias current, photon

energy, and strip width and compare it with NbN SSPD. We

observe non-linear current-energy dependence in MoNx SSPD

and more pronounced plateaus in dependences of detection

efficiency on bias current which we attribute to longer electronphonon

interaction time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1114
Permanent link to this record