|   | 
Details
   web
Records
Author Hu, Xiaolong; Dauler, Eric A.; Molnar, Richard J.; Berggren, Karl K.
Title Superconducting nanowire single-photon detectors integrated with optical nano-antennae Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 1 Pages 17-31
Keywords optical antennas
Abstract Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) RPLAB @ gujma @ Serial 745
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue Pages 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) RPLAB @ gujma @ Serial 747
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek
Title Antennas for light Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue 2 Pages 83-90
Keywords optical antennas
Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) RPLAB @ gujma @ Serial 748
Permanent link to this record
 

 
Author Novotny, Lukas
Title Effective wavelength scaling for optical antennas Type Journal Article
Year 2007 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 98 Issue 26 Pages 266802(1-4)
Keywords optical antennas
Abstract In antenna theory, antenna parameters are directly related to the wavelength λ of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing λ by a linearly scaled effective wavelength λeff=n1+n2λ/λp, with λp being the plasma wavelength and n1, n2 being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii Râ‰<aa>λ. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) RPLAB @ gujma @ Serial 749
Permanent link to this record
 

 
Author Saynak, UÄŸur
Title Novel rectangular spiral antennas Type Manuscript
Year 2008 Publication Abbreviated Journal
Volume Issue Pages
Keywords optical antennas
Abstract Round spiral antennas are generally designed by using Archimedean spiral geometries which have linear growth rates. To obtain smaller antennas with nearly the same performance, square spiral Archimedean geometries are also widely used instead. In this study, novel square antennas are proposed, designed and examined. At first two similar but different approaches are employed to design new antennas by considering the design procedure used to obtain log-periodic antennas. Then, the performance of these antennas is improved by considering another property of log-periodic antennas. Simulations are performed by using two different numerical methods which are Finite Difference Time Domain Method (FDTD) and Method of Moments (MoM). The results obtained from the simulations are compared with those of the Archimedean spiral antennas in terms of the frequency dependency of fundamental antenna parameters such as antenna gain and radiation pattern. The simulation results are compared with the ones obtained from the experimental study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) RPLAB @ gujma @ Serial 750
Permanent link to this record