|   | 
Details
   web
Records
Author Brown, E. R.; Lee, A. W. M.; Navi, B. S.; Bjarnason, J. E.
Title Characterization of a planar self-complementary square-spiral antenna in the THz region Type Journal Article
Year (up) 2006 Publication Microwave and Optical Technology Letters Abbreviated Journal Microwave Opt Technol Lett
Volume 48 Issue 3 Pages 524-529
Keywords optical antennas; square spiral antenna; self complementary THz; photomixing; lens; method of moments; geometric optics; physical optics
Abstract This paper describes a compact, self-complementary square-spiral antenna on a GaAs substrate with a broadside high-directivity (~9 dB) frequency-independent pattern when coupled through a silicon hyperhemisphere. The driving-point resistance undulates between ~00 and 300Ω from 200 GHz to 1 THz—much higher than the 72Ω value from Booker's modified formula, but quite beneficial for coupling to high-impedance broadband devices
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 736
Permanent link to this record
 

 
Author Novotny, Lukas
Title Effective wavelength scaling for optical antennas Type Journal Article
Year (up) 2007 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 98 Issue 26 Pages 266802(1-4)
Keywords optical antennas
Abstract In antenna theory, antenna parameters are directly related to the wavelength λ of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing λ by a linearly scaled effective wavelength λeff=n1+n2λ/λp, with λp being the plasma wavelength and n1, n2 being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii Râ‰<aa>λ. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 749
Permanent link to this record
 

 
Author Novotny, L.
Title The history of near-field optics Type Manuscript
Year (up) 2007 Publication Progress in Optics Abbreviated Journal Prog. Opt.
Volume 50 Issue Pages 137-180
Keywords optical antennas
Abstract This article provides a review of early work and developments in the field of near-field optics. The roots trace back to the letters exchanged between Edward Hutchinson Synge and Albert Einstein in 1928 and, because of the analogy to antenna theory and lightning rods, the origins project back to the time of Benjamin Franklin who discovered the wonderful Effect of Points both in drawing off and throwing off the Electrical Fire. The modern interest was mainly inspired by the invention of scanning probe microscopy and by the first optical near-field measurements by Dieter W. Pohl and co-workers at the IBM Research Laboratory in R¨uschlikon, Switzerland, and also by parallel developments of other groups. Near-field optics received inspiration from the fields of surface enhanced spectroscopy and from studies of energy transfer. While optical near-fields were extensively exploited for overcoming the diffraction limit in optical imaging the study of their physical aspects revealed unique properties which cannot be imitated by free propagating radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 752
Permanent link to this record
 

 
Author Bryant, Garnett W.; García de Abajo, F. Javier; Aizpurua, Javier
Title Mapping the Plasmon Resonances of Metallic Nanoantennas Type Journal Article
Year (up) 2008 Publication Nano Letters Abbreviated Journal Nano Lett.
Volume 5 Issue 2 Pages 631-636
Keywords optical antennas
Abstract We study the light scattering and surface plasmon resonances of Au nanorods that are commonly used as optical nanoantennas in analogy to dipole radio antennas for chemical and biodetection field-enhanced spectroscopies and scanned-probe microscopies. With the use of the boundary element method, we calculate the nanorod near-field and far-field response to show how the nanorod shape and dimensions determine its optical response. A full mapping of the size (length and radius) dependence for Au nanorods is obtained. The dipolar plasmon resonance wavelength λ shows a nearly linear dependence on total rod length L out to the largest lengths that we study. However, L is always substantially less than λ/2, indicating the difference between optical nanoantennas and long-wavelength traditional λ/2 antennas. Although it is often assumed that the plasmon wavelength scales with the nanorod aspect ratio, we find that this scaling does not apply except in the extreme limit of very small, spherical nanoparticles. The plasmon response depends critically on both the rod length and radius. Large (500 nm) differences in resonance wavelength are found for structures with different sizes but with the same aspect ratio. In addition, the plasmon resonance deduced from the near-field enhancement can be significantly red-shifted due to retardation from the resonance in far-field scattering. Large differences in near-field and far-field response, together with the breakdown of the simple scaling law must be accounted for in the choice and design of metallic λ/2 nanoantennas. We provide a general, practical map of the resonances for use in locating the desired response for gold nanoantennas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 737
Permanent link to this record
 

 
Author Saynak, UÄŸur
Title Novel rectangular spiral antennas Type Manuscript
Year (up) 2008 Publication Abbreviated Journal
Volume Issue Pages
Keywords optical antennas
Abstract Round spiral antennas are generally designed by using Archimedean spiral geometries which have linear growth rates. To obtain smaller antennas with nearly the same performance, square spiral Archimedean geometries are also widely used instead. In this study, novel square antennas are proposed, designed and examined. At first two similar but different approaches are employed to design new antennas by considering the design procedure used to obtain log-periodic antennas. Then, the performance of these antennas is improved by considering another property of log-periodic antennas. Simulations are performed by using two different numerical methods which are Finite Difference Time Domain Method (FDTD) and Method of Moments (MoM). The results obtained from the simulations are compared with those of the Archimedean spiral antennas in terms of the frequency dependency of fundamental antenna parameters such as antenna gain and radiation pattern. The simulation results are compared with the ones obtained from the experimental study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 750
Permanent link to this record