toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 151-154  
  Keywords HEB, mixer, bandwidth, noise temperatue, in-situ contacts, in situ contacts  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 590  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Paine, Scott; Lobanov, Yury; Blundell, Raymond; Goltsman, Gregory doi  openurl
  Title Temperature resolution of an HEB receiver at 810 GHz Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 3 Pages 293-296  
  Keywords HEB mixer  
  Abstract We present the results of direct measurements of the temperature resolution of an HEB receiver operating at 810 GHz, in both continuum and spectroscopic modes. In the continuum mode, the input of the receiver was switched between black bodies with different physical temperatures. With a system noise temperature of around 1100 K, the receiver was able to resolve loads which differed in temperature by about 1 K over an integration time of 5 seconds. This resolution is significantly worse than the value of 0.07 K given by the radiometer equation. In the spectroscopic mode, a gas cell filled with carbonyl sulphide (OCS) gas was used and the emission line at 813.3537060 GHz was measured using the receiver in conjunction with a digital spectrometer. From the observed spectra, we determined that the measurement uncertainty of the equivalent emission temperature was 2.8 K for an integration time of 0.25 seconds and a spectral resolution of 12 MHz, compared to a 1.4 K temperature resolution given by the radiometer equation. This relative improvement is due to the fact that at short integration times the contribution from 1/f noise and drift are less dominant. In both modes, the temperature resolution was improved by about 40% with the use of a feedback loop which adjusted the level of an injected microwave radiation to maintain a constant operating current of the HEB mixer. This stabilization scheme has proved to be very effective to keep the temperature resolution of the HEB receiver to close to the theoretical value given by the radiometer equation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 636  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Okunev, O. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title Noise equivalent temperature difference of a superconducting integrated terahertz receiver Type Journal Article
  Year 2009 Publication J. Commun. Technol. Electron. Abbreviated Journal J. Commun. Technol. Electron.  
  Volume 54 Issue 6 Pages 716-720  
  Keywords SIS mixer SIR NETD, FFO, harmonic mixer  
  Abstract The dependence of the noise equivalent temperature difference (NETD) of a superconducting integrated receiver (SIR) on the receiver noise temperature and the inputsignal level has been investigated. An unprecedented NETD of 13±2 mK has been measured at a SIR noise temperature of 200 K, intermediate-frequency bandwidth of 4 GHz, and time constant of 1 s. With a decrease in the input signal, an improvement in the NETD is observed. This effect is explained by a reduction in the influence of the instabilities of the receiver power supply and the amplification circuit that occur when the input signal is decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1400  
Permanent link to this record
 

 
Author Maslennikova, Anna; Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Kaurova, Natalia; Voronov, Boris; Gol’tsman, Gregory url  openurl
  Title Gain bandwidth and noise temperature of NbN HEB mixers with simultaneous phonon and diffusion cooling Type Abstract
  Year 2010 Publication Proc. 21th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 21th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 218-219  
  Keywords  
  Abstract The space observatory Millimetron will be operating in the millimeter, sub-millimeter and infrared ranges using a 12-m cryogenic telescope in a single-dish mode, and as an interferometer with the space-earth and space-space baselines (the latter after the launch of the second identical space telescope). The observatory will allow performing astronomical observations with an unprecedented sensitivity (down to nJy level) in the single-dish mode, and observations with a high angular resolution in the interferometer mode. The total spectral range 20 μm – 2 cm is separated into 10 bands. HEB mixers with two cooling channels (diffusion and phonon) have been chosen to be the detectors of choice of the system covering the range from 1 THz to 6 THz as the best detectors in terahertz receivers. This type of HEB has already shown good work in the terahertz range. A gain bandwidth of 6 GHz at an LO frequency of 300 GHz and a noise temperature of 750 K at an LO frequency of 2.5 THz are the best values for HEB mixers with two cooling channels [1]. Theoretical estimations predict a bandwidth up to 12 GHz. Reaching such good result demands more systematic and thorough research. We present the results of the gain bandwidth and noise temperature measurements for superconducting hot- electron bolometer mixers with two cooling channels. These characteristics of the devices of lengths varying from 50 to 200 nm were measured for the purposes of Millimetron at frequencies of 600 GHz, 2.5 THz, and 3.8 THz. For gain bandwidth measurements we use two BWO’s operating at 600 GHz: one as the signal and the second as the LO. The noise temperature measurements were performed using a gas discharge laser as the LO and blackbodies at 77 K and 295 K as input signals. The devices studied consist of 3.5-nm-thick NbN bridges connected to thick (10 nm) high conductivity Au leads fabricated in situ. This method of fabricating devices has already proved promising by opening the diffusion cooling channel. [2] Fig. 1 shows a SEM photograph of a log-spiral antenna with an HEB at its apex. Fig. 1. Left: a SEM photograph of a log-spiral antenna with an HEB at its apex; right: a close-up of the HEB at the antenna apex. [1] S. A. Ryabchun, I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov, and G. N. Gol’tsman, NbN phonon-cooled hot-electron bolometer mixer with additional diffusion cooling, Proc. of the 20 th Int. Symp. Space. Technol., Charlottesville, Virginia, USA, April 20 – 22, 2009. 218[2] S. A. Ryabchun * , I. V. Tretyakov, M. I. Finkel, S. N. Maslennikov, N. S. Kaurova, V. A. Seleznev, B. M. Voronov and G. N. Goltsman, Fabrication and characterisation of NbN HEB mixers with in situ gold contacts, Proc. of the 19 th Int. Symp. Space. Technol., Groningen, The Netherlands, April 28-30, 2008  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1393  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Okunev, O. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot-electron bolometer mixer as element of thermal imager matrix Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 36 Issue 11 Pages 1006-1008  
  Keywords HEB mixers  
  Abstract The possibility of using a matrix of sensitive elements on a 12-mm-diameter hyperhemispherical lens in a thermal imager operating in the terahertz range has been studied. Dimensions of a lens region acceptable for arrangement of the matrix, in which the receiver noise temperature varies within 16% of the mean value, are determined to be 3.3% of the lens diameter. Deviations of the main lobe of the directivity pattern are evaluated, which amount to ±1.25° relative to the direction toward the optimum position of a mixer. The fluctuation sensitivity of the receiver measured in experiment is 0.5 K at a frequency of 300 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) Serial 1390  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: