toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7138 Issue Pages 713827 (1 to 6)  
  Keywords SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver  
  Abstract At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor (down) Tománek, P.; Senderáková, D.; Hrabovský, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1405  
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R. url  doi
openurl 
  Title Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7009 Issue Pages 70090V (1 to 8)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting nanost  
  Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 μm2 in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 μm and 1.55 μm telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-heliumstorage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be < 1.5 ns and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is < 35 ps and their dark-count rate is below 1s-1. The presented performance parameters show that our single-photon receivers are fully applicable for quantum correlation-type QC systems, including practical quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor (down) Sukhoivanov, I.A.; Svich, V.A.; Shmaliy, Y.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1413  
Permanent link to this record
 

 
Author Hoogeveen, R. W. M.; Yagoubov, P. A.; Maurellis, A.; Koshelets, V. P.; Shitov, S. V.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Huebers, H.-W.; Richter, H.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Ellison, B.N.; Kerridge, B.J.; Matheson, D. N.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J. url  doi
openurl 
  Title New cryogenic heterodyne techniques applied in TELIS: the balloonborne THz and submillimeter limb sounder for atmospheric research Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5152 Issue Pages 347-355  
  Keywords TELIS, limb sounder, heterodyne detection, terahertz, sub millimeter, cryogenic, limb sounding, balloon borne, atmospheric research  
  Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth’s atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration ( 24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA).  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor (down) Strojnik, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Spaceborne Remote Sensing XI  
  Notes Approved no  
  Call Number Serial 1508  
Permanent link to this record
 

 
Author Sobolewski, R.; Zhang, J.; Slysz, W.; Pearlman, A.; Verevkin, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Goltsman, G. N. url  doi
openurl 
  Title Ultrafast superconducting single-photon optical detectors Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5123 Issue Pages 1-11  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a new class of single-photon devices for counting of both visible and infrared photons. Our superconducting single-photon detectors (SSPDs) are characterized by the intrinsic quantum efficiency (QE) reaching up to 100%, above 10 GHz counting rate, and negligible dark counts. The detection mechanism is based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The devices are fabricated from 3.5-nm-thick NbN films and operate at 4.2 K, well below the NbN superconducting transition temperature. Various continuous and pulsed laser sources in the wavelength range from 0.4 μm up to >3 μm were implemented in our experiments, enabling us to determine the detector QE in the photon-counting mode, response time, and jitter. For our best 3.5-nm-thick, 10×10 μm2-area devices, QE was found to reach almost 100% for any wavelength shorter than about 800 nm. For longer-wavelength (infrared) radiation, QE decreased exponentially with the photon wavelength increase. Time-resolved measurements of our SSPDs showed that the system-limited detector response pulse width was below 150 ps. The system jitter was measured to be 35 ps. In terms of the counting rate, jitter, and dark counts, the NbN SSPDs significantly outperform their semiconductor counterparts. Already identifeid and implemented applications of our devices range from noninvasive testing of semiconductor VLSI circuits to free-space quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor (down) Spigulis, J.; Teteris, J.; Ozolinsh, M.; Lusis, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Optical Devices, Technologies, and Medical Applications  
  Notes Approved no  
  Call Number Serial 1513  
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S. url  openurl
  Title Hot electron mixers for THz applications Type Conference Article
  Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal Proc. 30th ESLAB  
  Volume Issue Pages 207-210  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.  
  Address Noordwijk, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (down) Rolfe, E. J.; Pilbratt, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: