|   | 
Details
   web
Records
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Tarkhov, M. A.; Gol’tsman, G. N.
Title Single-photon detectors for the visible and infrared parts of the spectrum based on NbN nanostructures Type Abstract
Year 2009 Publication Proc. Progress In Electromagnetics Research Symp. Abbreviated Journal Proc. Progress In Electromagnetics Research Symp.
Volume Issue Pages 863-864
Keywords SSPD, SNSPD
Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types ofdetectors [1, 2] and their use both in fundamental and applied studies [3–6]. In this paper, wepresent the results of the development and fabrication of receiving systems for the visible andinfrared parts of the spectrum optimised for use in telecommunication systems and quantumcryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Moscow, Russia Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ smirnovsession Serial 1050
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G.
Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no
Call Number Serial 1751
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Mirskii, G. I.
Title Submillimeter backward-wave-tube spectrometer-relaxometer Type Journal Article
Year 1987 Publication Pribory i Tekhnika Eksperimenta Abbreviated Journal Pribory i Tekhnika Eksperimenta
Volume 30 Issue 4 Pages 131-137
Keywords BWO, applications
Abstract A backward-wave-tube (BWT) spectrometer-relaxometer is described that is designed for study of the relaxation characteristics of photoconductors in the wavelength range of 2-0.25 mm – in particular, to measure the relaxation times of the submillimeter photoconductivity of germanium in the range of 10[sup:-4]-10[sup:-9] sec and to determine from these data the concentration of compensating impurities of from 10[sup:10] to 10[sup:14] cm[sup:-3]. The instrument uses the beats of the oscillations of two BWTs and records the amplitude-frequency response of the specimen with variation of the beat frequency from 10[sup:4] to 10[sup:8] Hz with accumulation of the desired signal for less than or equal to1 sec by means of a quadrature synchronous detector. The beat frequency is stabilized and the quadrature voltages of the synchronous detector are formed by means of phase-locked loops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1699
Permanent link to this record
 

 
Author Divochiy, A.; Misiaszek, M.; Vakhtomin, Y.; Morozov, P.; Smirnov, K.; Zolotov, P.; Kolenderski, P.
Title Single photon detection system for visible and infrared spectrum range Type Journal Article
Year 2018 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 43 Issue 24 Pages 6085-6088
Keywords
Abstract We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4x10(4) in our detection setting. A photon detection efficiency as high as 64% at 1550 nm and 15% at 2300 nm was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes https://arxiv.org/abs/1807.04273 Approved no
Call Number Serial 1227
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y.
Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
Year 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.
Volume 80 Issue 7 Pages 435
Keywords SSPD, quantum efficiency
Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-9762 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1172
Permanent link to this record