toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R. doi  openurl
  Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
  Year 2005 Publication Quantum Electronics Abbreviated Journal  
  Volume 35 Issue 8 Pages 698-700  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no  
  Call Number Serial 383  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Rosfjord, Kristine M.; Yang, Joel K. W.; Dauler, Eric A.; Kerman, Andrew J.; Vikas Anant; Voronov, Boris M.; Gol'tsman, Gregory N.; Berggren, Karl K. url  doi
openurl 
  Title Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating Type Journal Article
  Year 2006 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 14 Issue 2 Pages 527-534  
  Keywords SSPD, SNSPD, cavity  
  Abstract We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19503367 Approved no  
  Call Number Serial 388  
Permanent link to this record
 

 
Author Delacour, C.; Claudon, J.; Poizat, J.-Ph.; Pannetier, B.; Bouchiat, V.; de Lamaestre, R. Espiau; Villegier, J.-C.; Tarkhov, M.; Korneev, A.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Superconducting single photon detectors made by local oxidation with an atomic force microscope Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 90 Issue 19 Pages 191116 (1 t0 3)  
  Keywords SSPD  
  Abstract The authors present a fabrication technique of superconducting single photon detectors made by local oxidation of niobium nitride ultrathin films. Narrow superconducting meander lines are obtained by direct writing of insulating niobium oxynitride lines through the films using voltage-biased tip of an atomic force microscope. Due to the 30nm resolution of the lithographic technique, the filling factor of the meander line can be made substantially higher than detector of similar geometry made by electron beam lithography, thus leading to increased quantum efficiency. Single photon detection regime of these devices is demonstrated at 4.2K.

The authors thank J.-P. Maneval for stimulating discussions. This work has been partly supported by ACI Nanoscience from French Ministry of Research, D.G.A., by Grant No. 02.445.11.7434 of Russian Ministry of Education and Science, and by the European Commission under project “SINPHONIA,” Contract No. NMP4-CT-2005-16433.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 423  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: