toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Il’in, K. S.; Milostnaya, I. I.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.; Sobolewski, R. url  doi
openurl 
  Title Ultimate quantum efficiency of a superconducting hot-electron photodetector Type Journal Article
  Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 73 Issue 26 Pages 3938-3940  
  Keywords NbN SSPD, SNSPD  
  Abstract The quantum efficiency and current and voltage responsivities of fast hot-electron photodetectors, fabricated from superconducting NbN thin films and biased in the resistive state, have been shown to reach values of 340, 220 A/W, and 4×104 V/W,

respectively, for infrared radiation with a wavelength of 0.79 μm. The characteristics of the photodetectors are presented within the general model, based on relaxation processes in the nonequilibrium electron heating of a superconducting thin film. The observed, very high efficiency and sensitivity of the superconductor absorbing the photon are explained by the high multiplication rate of quasiparticles during the avalanche breaking of Cooper pairs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1579  
Permanent link to this record
 

 
Author (down) Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M. url  doi
openurl 
  Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
  Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 76 Issue 19 Pages 2752-2754  
  Keywords NbN HEB detectors, two-temperature model, IF bandwidth  
  Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 856  
Permanent link to this record
 

 
Author (down) Hübers, H.-W.; Semenov, A.; Holldack, K.; Schade, U.; Wüstefeld, G.; Gol’tsman, G. url  doi
openurl 
  Title Time domain analysis of coherent terahertz synchrotron radiation Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 87 Issue 18 Pages 184103 (1 to 3)  
  Keywords NbN HEB mixers, applications  
  Abstract The time structure of coherent terahertz synchrotron radiation at the electron storage ring of the Berliner Elektronensynchrotron und Speicherring Gesellschaft has been analyzed with a fast superconducting hot-electron bolometer. The emission from a single bunch of electrons was found to last ∼1500ps at frequencies around 0.4THz, which is much longer than the length of an electron bunch in the time domain (∼5ps). It is suggested that this is caused by multiple reflections at the walls of the beam line. The quadratic increase of the power with the number of electrons in the bunch as predicted for coherent synchrotron radiation and the transition from stable to bursting radiation were determined from a single storage ring fill pattern of bunches with different populations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1457  
Permanent link to this record
 

 
Author (down) Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. url  doi
openurl 
  Title Picosecond superconducting single-photon optical detector Type Journal Article
  Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 79 Issue 6 Pages 705-707  
  Keywords NbN SSPD, SNSPD  
  Abstract We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1543  
Permanent link to this record
 

 
Author (down) Gershenson, M. E.; Gong, D.; Sato, T.; Karasik, B. S.; Sergeev, A. V. openurl 
  Title Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures Type Journal Article
  Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 79 Issue Pages 2049-2051  
  Keywords HEB detector, FIR, far infrared  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ heb_eph_interaction_Gershenzon Serial 315  
Permanent link to this record
 

 
Author (down) Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L. openurl 
  Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 86 Issue Pages 244104 (1 to 3)  
  Keywords HEB, QCL  
  Abstract We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 905  
Permanent link to this record
 

 
Author (down) Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Klapwijk, T. M.; Voronov, B.; Grishin, E.; Gol’tsman, G.; Zorman, C. A.; Mehregany, M. url  doi
openurl 
  Title Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue 6 Pages 062504 (1 to 3)  
  Keywords NbN films, nanofilms  
  Abstract The authors have realized NbN (100) nanofilms on a 3C-SiC (100)/Si(100) substrate by dc reactive magnetron sputtering at 800°C. High-resolution transmission electron microscopy (HRTEM) is used to characterize the films, showing a monocrystalline structure and confirming epitaxial growth on the 3C-SiC layer. A film ranging in thickness from 3.4to4.1nm shows a superconducting transition temperature of 11.8K, which is the highest reported for NbN films of comparable thickness. The NbN nano-films on 3C-SiC offer a promising alternative to improve terahertz detectors. For comparison, NbN nanofilms grown directly on Si substrates are also studied by HRTEM.

The authors acknowledge S. V. Svetchnikov at National Centre for HRTEM at Delft, who prepared the specimens for HRTEM inspections. This work was supported by the EU through RadioNet and INTAS.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1425  
Permanent link to this record
 

 
Author (down) Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L. openurl 
  Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume Issue 86 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes art.num. 244104 Approved no  
  Call Number RPLAB @ s @ qc_lasers_gao Serial 368  
Permanent link to this record
 

 
Author (down) Floet D. W.; Gao J. R.; Klapwijk T. M.; de Korte P. A. J. url  doi
openurl 
  Title Bias Dependence of the Thermal Time Constant in Nb Superconducting Diffusion-Cooled HEB Mixers Type Journal Article
  Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 77 Issue Pages 1719  
  Keywords  
  Abstract We present an experimental study of the intermediate frequency bandwidth of a Nb diffusion-cooled hot-electron bolometer mixer for different bias voltages. The measurements show that the bandwidth increases with increasing voltage. Analysis of the data reveals that this effect is mainly caused by a decrease of the intrinsic thermal time of the mixer and that the effect of electrothermal feedback through the intermediate frequency circuit is small. The results are understood using a qualitative model, which takes into account the different effective diffusion constants in the normal and superconducting domains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 971  
Permanent link to this record
 

 
Author (down) Fetterman, H. R.; Tannenwald, P. E.; Clifton, B. J.; Parker, C. D.; Fitzgerald, W. D.; Erickson, N. R. openurl 
  Title Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers Type Journal Article
  Year 1978 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 33 Issue 2 Pages 151-154  
  Keywords Schottky  
  Abstract Frequency countings close to a phase locked zone in an electronic receiver show a 1/f power spectral density. The noise scaling versus the frequency deviation and the open loop gain are found from Adler's model of the phase locked loop. This fully agrees with experiments performed at 5 MHz on a receiver with a Schottky diode mixer and a low pass filter. The 1/f amplitude and frequency noise due to the whole set of (sub)harmonics is explained from a nonlinear mapping, with a coupling coefficient related to the structure of prime numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: