Records |
Author  |
Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P. |
Title |
Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors |
Type |
Journal Article |
Year |
2015 |
Publication |
Carbon |
Abbreviated Journal |
Carbon |
Volume |
87 |
Issue |
|
Pages |
330-337 |
Keywords |
carbon nanotubes, CNT detectors, field effect transistors, FET |
Abstract |
Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0008-6223 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
1778 |
Permanent link to this record |
|
|
|
Author  |
Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G. |
Title |
On chip carbon nanotube tunneling spectroscopy |
Type |
Journal Article |
Year |
2020 |
Publication |
Fullerenes, Nanotubes and Carbon Nanostructures |
Abbreviated Journal |
|
Volume |
28 |
Issue |
1 |
Pages |
50-53 |
Keywords |
carbon nanotubes, CNT, scanning tunneling microscope, STM |
Abstract |
We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
Taylor & Francis |
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
doi:10.1080/1536383X.2019.1671365 |
Serial |
1269 |
Permanent link to this record |