|   | 
Details
   web
Record
Author (up) Prober, D. E.
Title Superconducting terahertz mixer using a transition-edge microbolometer Type Journal Article
Year 1993 Publication Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520-2157 Abbreviated Journal
Volume Issue Pages 2119-2121
Keywords
Abstract We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and a rf signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid ( < 0.1 ns) outdiffision of hot electrons occurs. This gives large intermediate frequency (if) response. The mixer offers ~4 GHz if bandwidth, z 80 Cl rf resistive impedance, good match to the if amplifier, and requires only l-20 nW of local oscillator power. The upper rf frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is l/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 T, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 955
Permanent link to this record