|
Records |
Links |
|
Author  |
Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. |

|
|
Title |
High resolution THz gas spectrometer based on semiconductor and superconductor devices |
Type |
Conference Article |
|
Year |
2017 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
|
|
Volume |
132 |
Issue |
|
Pages |
02001 (1 to 2) |
|
|
Keywords |
NbN HEB mixers, detectors, THz spectroscopy |
|
|
Abstract |
The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1328 |
|
Permanent link to this record |
|
|
|
|
Author  |
Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A. |

|
|
Title |
Response of carbon nanotube film transistor to the THz radiation |
Type |
Conference Article |
|
Year |
2018 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
|
|
Volume |
195 |
Issue |
|
Pages |
05012 (1 to 2) |
|
|
Keywords |
field-effect transistor, FET, carbon nanotube, CNT |
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1317 |
|
Permanent link to this record |
|
|
|
|
Author  |
Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. |

|
|
Title |
Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system |
Type |
Conference Article |
|
Year |
2017 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
|
|
Volume |
132 |
Issue |
|
Pages |
01004 (1 to 2) |
|
|
Keywords |
QKD, SSPD, SNSPD |
|
|
Abstract |
Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing scheme. Under bright-light illumination, SSPD becomes resistive and remains “latched” in the resistive state even when the light is switched off. While the SSPD is latched, Eve can simulate SSPD single-photon response by sending strong light pulses, thus deceiving Bob. We developed the experimental setup for investigation of a dependence on latching threshold of SSPD on optical pulse length and peak power. By knowing latching threshold it is possible to understand essential requirements for development countermeasures against blinding attack on quantum key distribution system with SSPDs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1327 |
|
Permanent link to this record |
|
|
|
|
Author  |
Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. |

|
|
Title |
Countermeasures against blinding attack on superconducting nanowire detectors for QKD |
Type |
Conference Article |
|
Year |
2015 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
|
|
Volume |
103 |
Issue |
|
Pages |
10002 (1 to 2) |
|
|
Keywords |
SSPD, SNSPD, QKD |
|
|
Abstract |
Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1352 |
|
Permanent link to this record |
|
|
|
|
Author  |
Elezov, M.; Scherbatenko, M.; Sych, D.; Goltsman, G.; Arakelyan, S.; Evlyukhin, A.; Kalachev, A.; Naumov, A. |

|
|
Title |
Towards the fiber-optic Kennedy quantum receiver |
Type |
Conference Article |
|
Year |
2019 |
Publication |
EPJ Web Conf. |
Abbreviated Journal |
EPJ Web Conf. |
|
|
Volume |
220 |
Issue |
|
Pages |
03011 (1 to 2) |
|
|
Keywords |
SSPD, SNSPD, Kennedy quantum receiver |
|
|
Abstract |
We consider practical aspects of using standard fiber-optic elements and superconducting nanowire single-photon detectors for the development of a practical quantum receiver based on the Kennedy scheme. Our receiver allows to discriminate two phase-modulated coherent states of light at a wavelength of 1.5 microns in continuous mode with bit rate 200 Kbit/s and error rate about two times below the standard quantum limit. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1288 |
|
Permanent link to this record |