|
Records |
Links |
|
Author |
Elezov, M. S.; Ozhegov, R. V.; Goltsman, G. N.; Makarov, V. |
|
|
Title |
Development of the experimental setup for investigation of latching of superconducting single-photon detector caused by blinding attack on the quantum key distribution system |
Type |
Conference Article |
|
Year |
2017 |
Publication |
EPJ Web of Conferences |
Abbreviated Journal |
EPJ Web of Conferences |
|
|
Volume |
132 |
Issue |
2 |
Pages |
2 |
|
|
Keywords |
|
|
|
Abstract |
Recently bright-light control of the SSPD has been
demonstrated. This attack employed a “backdoor†in the detector biasing
scheme. Under bright-light illumination, SSPD becomes resistive and
remains “latched†in the resistive state even when the light is switched off.
While the SSPD is latched, Eve can simulate SSPD single-photon response
by sending strong light pulses, thus deceiving Bob. We developed the
experimental setup for investigation of a dependence on latching threshold
of SSPD on optical pulse length and peak power. By knowing latching
threshold it is possible to understand essential requirements for
development countermeasures against blinding attack on quantum key
distribution system with SSPDs. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ kovalyuk @ |
Serial |
1116 |
|
Permanent link to this record |
|
|
|
|
Author |
Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. |
|
|
Title |
Response of graphene based gated nanodevices exposed to THz radiation |
Type |
Conference Article |
|
Year |
2015 |
Publication |
EPJ Web of Conferences |
Abbreviated Journal |
EPJ Web of Conferences |
|
|
Volume |
103 |
Issue |
|
Pages |
10003 (1 to 2) |
|
|
Keywords |
graphene field-effect transistor, FET |
|
|
Abstract |
In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1350 |
|
Permanent link to this record |
|
|
|
|
Author |
Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. |
|
|
Title |
Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs |
Type |
Conference Article |
|
Year |
2015 |
Publication |
EPJ Web of Conferences |
Abbreviated Journal |
EPJ Web of Conferences |
|
|
Volume |
103 |
Issue |
|
Pages |
10004 (1 to 2) |
|
|
Keywords |
SSPD, SNSPD |
|
|
Abstract |
We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1351 |
|
Permanent link to this record |
|
|
|
|
Author |
Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. |
|
|
Title |
New generation of superconducting nanowire single-photon detectors |
Type |
Conference Article |
|
Year |
2015 |
Publication |
EPJ Web of Conferences |
Abbreviated Journal |
EPJ Web of Conferences |
|
|
Volume |
103 |
Issue |
|
Pages |
01006 (1 to 2) |
|
|
Keywords |
SSPD, SNSPD |
|
|
Abstract |
We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2100-014X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
1349 |
|
Permanent link to this record |