toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawakami, A; Saito, S.; Hyodo, M. openurl 
  Title Fabrication of nano-antennas for superconducting Infrared detectors Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages 632-635  
  Keywords optical antennas, NbN/MgO/NbN/TiN/Al HEB, dipole antennas, IR, infrared  
  Abstract To improve the response performance of superconducting infrared detectors, we have developed a fabrication process for nano-antennas. A nano-antenna consists of a dipole antenna, and a superconducting thin film strip placed in the antenna's center. By measuring the transition temperature of the superconducting strips, we confirmed that their superconductivity maintained a good condition after the nano-antenna fabrication process. We also evaluated nano-antenna characteristics using Fourier transform infrared spectroscopy. The evaluated antenna length and width were respectively set at around 2400 nm and 400 nm, and the antennas were placed at intervals of several micrometers around the area of 1 mm2 . In an evaluation of spectral transmission characteristics, clear absorption caused by antenna effects was observed at around 1400 cm-1. High polarization dependencies were also observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 761  
Permanent link to this record
 

 
Author Galeazzi, Massimiliano openurl 
  Title Fundamental noise processes in TES devices Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages 267-271  
  Keywords TES, Johnson noise, phonon noise, excess noise, flux-flow noise, thermal fluctuation noise  
  Abstract Microcalorimeters and bolometers are noise-limited devices, therefore, a proper understanding of all noise sources is essential to predict and interpret their performance. In this paper, I review the fundamental noise processes contributing to Transition Edge Sensor (TES) microcalorimeters and bolometers and their effect on device performance. In particular, I will start with a simple, monolithic device model, moving to a more complex one involving discrete components, to finally move to today's more realistic, comprehensive model. In addition to the basic noise contribution (equilibrium Johnson noise and phonon noise), TES are significantly affected by extra noise, which is commonly referred to as excess noise. Different fundamental processes have been proposed and investigated to explain the origin of this excess noise, in particular near equilibrium non-linear Johnson noise, flux-flow noise, and internal thermal fluctuation noise. Experimental evidence shows that all three processes are real and contribute, at different levels, to the TES noise, although different processes become important at different regimes. It is therefore time to discard the term “excess noise” and consider these terms part of the “fundamental noise processes” instead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 914  
Permanent link to this record
 

 
Author Schuck, C.; Pernice, W. H. P.; Minaeva, O.; Li, Mo; Gol'tsman, G.; Sergienko, A. V.; Tang, H. X. url  doi
openurl 
  Title Matrix of integrated superconducting single-photon detectors with high timing resolution Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2201007-2201007  
  Keywords NbN SSPD, SNSPD, array, matrix  
  Abstract We demonstrate a large grid of individually addressable superconducting single photon detectors on a single chip. Each detector element is fully integrated into an independent waveguide circuit with custom functionality at telecom wavelengths. High device density is achieved by fabricating the nanowire detectors in traveling wave geometry directly on top of silicon-on-insulator waveguides. Our superconducting single photon detector matrix includes detector designs optimized for high detection efficiency, low dark count rate, and high timing accuracy. As an example, we exploit the high timing resolution of a particularly short nanowire design to resolve individual photon round-trips in a cavity ring-down measurement of a silicon ring resonator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1373  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: