toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 3757-3760  
  Keywords NbN HEB mixers  
  Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1569  
Permanent link to this record
 

 
Author (down) Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K. openurl 
  Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 19 Issue 3 Pages 336-340  
  Keywords optical antennas; SNSPD  
  Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 647  
Permanent link to this record
 

 
Author (down) Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-4  
  Keywords NBN HEB mixer  
  Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1331  
Permanent link to this record
 

 
Author (down) Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. doi  openurl
  Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type Conference Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 6  
  Keywords Multi-pixel, HEB, silicon-on-insulator, horn array  
  Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1111  
Permanent link to this record
 

 
Author (down) Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G. url  doi
openurl 
  Title Development of a silicon membrane-based multipixel hot electron bolometer receiver Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-5  
  Keywords Multi-pixel, NbN HEB, silicon-on-insulator, horn array  
  Abstract We report on the development of a multipixel hot electron bolometer (HEB) receiver fabricated using silicon membrane technology. The receiver comprises a 2 × 2 array of four HEB mixers, fabricated on a single chip. The HEB mixer chip is based on a superconducting NbN thin-film deposited on top of the silicon-on-insulator (SOI) substrate. The thicknesses of the device layer and handling layer of the SOI substrate are 20 and 300 μm, respectively. The thickness of the device layer is chosen such that it corresponds to a quarter-wave in silicon at 1.35 THz. The HEB mixer is integrated with a bow-tie antenna structure, in turn designed for coupling to a circular waveguide, fed by a monolithic drilled smooth-walled horn array.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1324  
Permanent link to this record
 

 
Author (down) Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
 

 
Author (down) Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikov, Sergey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory doi  openurl
  Title Ultrawide noise bandwidth of NbN hot-electron bolometer mixers with in situ gold contacts Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 21 Issue 3 Pages 620-623  
  Keywords NbN HEB mixer bandwidth  
  Abstract We report a noise bandwidth of 7 GHz in the new generation of NbN hot-electron bolometer (HEB) mixers that are being developed for the space observatory Millimetron. The HEB receiver driven by a 2.5-THz local oscillator offered a noise temperature of 600 K in a 50-MHz final detection bandwidth. As the filter center frequency was swept this value remained nearly constant up to the cutoff frequency of the cryogenic amplifier at 7 GHz. We believe that such a low value of the noise temperature is due to reduced radio frequency (RF) loss at the interface between the superconducting film and the gold contacts. We have also performed gain bandwidth measurements at the superconducting transition on HEB mixers with various lengths and found them to be in excellent agreement with the results of the analytical and numerical models developed for the HEB mixer with both diffusion and phonon cooling of hot electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 716  
Permanent link to this record
 

 
Author (down) Torgashin, Mikhail Yu.; Koshelets, Valery P.; Dmitriev, Pavel N.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Yagoubov, Pavel A. url  doi
openurl 
  Title Superconducting Integrated Receiver Based on Nb-AlN-NbN-Nb Circuits Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages 379-382  
  Keywords SIR  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 525  
Permanent link to this record
 

 
Author (down) Torgashin, M. Yu.; Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Filippenko, L. V.; Yagoubov, P. A. openurl 
  Title Superconducting integrated receivers based on Nb-AlN-NbN circuits Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages 379-382  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ mix_SIR_ieee_trans_2007 Serial 406  
Permanent link to this record
 

 
Author (down) Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G. url  doi
openurl 
  Title A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300604 (1 to 4)  
  Keywords NbN HEB mixer  
  Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1354  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: