toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kitaygorsky, J.; Komissarov, I.; Jukna, A.; Pan, D.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.R. url  doi
openurl 
  Title Dark counts in nanostructured nbn superconducting single-photon detectors and bridges Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages (down) 275-278  
  Keywords SSPD; SNSPD  
  Abstract We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1248  
Permanent link to this record
 

 
Author Galeazzi, Massimiliano openurl 
  Title Fundamental noise processes in TES devices Type Journal Article
  Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 21 Issue 3 Pages (down) 267-271  
  Keywords TES, Johnson noise, phonon noise, excess noise, flux-flow noise, thermal fluctuation noise  
  Abstract Microcalorimeters and bolometers are noise-limited devices, therefore, a proper understanding of all noise sources is essential to predict and interpret their performance. In this paper, I review the fundamental noise processes contributing to Transition Edge Sensor (TES) microcalorimeters and bolometers and their effect on device performance. In particular, I will start with a simple, monolithic device model, moving to a more complex one involving discrete components, to finally move to today's more realistic, comprehensive model. In addition to the basic noise contribution (equilibrium Johnson noise and phonon noise), TES are significantly affected by extra noise, which is commonly referred to as excess noise. Different fundamental processes have been proposed and investigated to explain the origin of this excess noise, in particular near equilibrium non-linear Johnson noise, flux-flow noise, and internal thermal fluctuation noise. Experimental evidence shows that all three processes are real and contribute, at different levels, to the TES noise, although different processes become important at different regimes. It is therefore time to discard the term “excess noise” and consider these terms part of the “fundamental noise processes” instead.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 914  
Permanent link to this record
 

 
Author Bell, M.; Kaurova, N.; Divochiy, A.; Gol'tsman, G.; Bird, J.; Sergeev, A.; Verevkin, A. url  doi
openurl 
  Title On the nature of resistive transition in disordered superconducting nanowires Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages (down) 267-270  
  Keywords SSPD, SNSPD  
  Abstract Hot-electron single-photon counters based on long superconducting nanowires are starting to become popular in optical and infrared technologies due to their ultimately high sensitivity and very high response speed. We investigate intrinsic fluctuations in long NbN nanowires in the temperature range of 4.2 K-20 K, i.e. above and below the superconducting transition. These fluctuations are responsible for fluctuation resistivity and also determine the noise in practical devices. Measurements of the fluctuation resistivity were performed at low current densities and also in external magnetic fields up to 5 T. Above the BCS critical temperature T co the resistivity is well described by the Aslamazov-Larkin (AL) theory for two-dimensional samples. Below T co the measured resistivity is in excellent agreement with the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory developed for one-dimensional superconductors. Despite that our nanowires of 100 nm width are two-dimensional with respect to the coherence length, our analysis shows that at relatively low current densities the one-dimensional LAMH mechanism based on thermally induced phase slip centers dominates over the two-dimensional mechanism related to unbinding of vortex-antivortex pairs below the Berezinskii-Kosterlitz-Thouless transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1247  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Yang, Z. Q.; Baselmans, J. J. A.; Khosropanah, P.; Barends, R.; Klapwijk, T. M. url  doi
openurl 
  Title Terahertz superconducting hot electron bolometer heterodyne receivers Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 17 Issue 2 Pages (down) 252-258  
  Keywords HEB, mixer, direct detection effect  
  Abstract We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ asmirn @ Serial 557  
Permanent link to this record
 

 
Author Gol'tsman, G.; Minaeva, O.; Korneev, A.; Tarkhov, M.; Rubtsova, I.; Divochiy, A.; Milostnaya, I.; Chulkova, G.; Kaurova, N.; Voronov, B.; Pan, D.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Komissarov, I.; Slysz, W.; Wegrzecki, M.; Grabiec, P.; Sobolewski, R. url  doi
openurl 
  Title Middle-infrared to visible-light ultrafast superconducting single-photon detectors Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages (down) 246-251  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of the state-of-the-art of NbN superconducting single-photon detectors (SSPDs). Our devices exhibit quantum efficiency (QE) of up to 30% in near-infrared wavelength and 0.4% at 5 mum, with a dark-count rate that can be as low as 10 -4 s -1 . The SSPD structures integrated with lambda/4 microcavities achieve a QE of 60% at telecommunication, 1550-nm wavelength. We have also developed a new generation of SSPDs that possess the QE of large-active-area devices, but, simultaneously, are characterized by low kinetic inductance that allows achieving short response times and the GHz-counting rate with picosecond timing jitter. The improvements presented in the SSPD development, such as fiber-coupled SSPDs, make our detectors most attractive for high-speed quantum communications and quantum computing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 431  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages (down) 192-195  
  Keywords NbN SSPD, SNSPD  
  Abstract Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1515  
Permanent link to this record
 

 
Author Zhang, Jin; Slysz, W.; Verevkin, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G. N.; Sobolewski, R. doi  openurl
  Title Response time characterization of NbN superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages (down) 180-183  
  Keywords SSPD jitter, SNSPD jitter  
  Abstract We report our time-resolved measurements of NbN-based superconducting single-photon detectors. The structures are meander-type, 10-nm thick, and 200-nm wide stripes and were operated at 4.2 K. We have shown that the NbN devices can count single-photon pulses with below 100-ps time resolution. The response signal pulse width was about 150 ps, and the system jitter was measured to be 35 ps.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1058  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, Heinz-Wilhelm; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Vachtomin, Yu. B.; Finkel, M. I.; Antipov, S. V.; Voronov, B. M.; Smirnov, K. V.; Kaurova, N. S.; Drakinski, V. N.; Gol'tsman, G. N. doi  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume 13 Issue 2 Pages (down) 168-171  
  Keywords NbN HEB mixers  
  Abstract We present recent results showing the development of superconducting NbN hot-electron bolometer mixer for German receiver for astronomy at terahertz frequencies and terahertz limb sounder. The mixer is incorporated into a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and backed on a silicon lens. The hybrid antenna had almost frequency independent and symmetric radiation pattern slightly broader than expected for a diffraction limited antenna. At 2.5 THz the best 2200 K double side-band receiver noise temperature was achieved across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. For this operation regime, a receiver conversion efficiency of -17 dB was directly measured and the loss budget was evaluated. The mixer response was linear at load temperatures smaller than 400 K. Implementation of the MgO buffer layer on Si resulted in an increased 5.2 GHz gain bandwidth. The receiver was tested in the laboratory environment by measuring a methanol emission line at 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 343  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages (down) 164-167  
  Keywords NbN HEB mixer  
  Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory url  doi
openurl 
  Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 1 Pages (down) 14-19  
  Keywords HEB, mixer, Allan variance, stabilization, radiometer equation  
  Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 559  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: