|   | 
Details
   web
Records
Author de Lange, G.; Kuipers, J. J.; Klapwijk, T. M.; Panhuyzen, R. A.; van de Stadt, H.; de Graauw, M. W. M.
Title Superconducting resonator circuits at frequencies above the gap frequency Type Journal Article
Year 1995 Publication J. Appl. Phys. Abbreviated Journal
Volume 77 Issue 4 Pages 1795-1804
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 257
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Dieleman, P.; Baryshev, A.; de Lange, G.
Title IF impedance and mixer gain of NbN hot electron bolometers Type Journal Article
Year 2007 Publication J. Appl. Phys. Abbreviated Journal
Volume 101 Issue 4 Pages 044511
Keywords (up)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 445
Permanent link to this record
 

 
Author Uchiki, Hisao; Kobayashi, Takayoshi; Sakaki, Hiroyuki
Title Photoluminescence and energy‐loss rates in GaAs quantum wells under high‐density excitation Type Journal Article
Year 1987 Publication J. Appl. Phys. Abbreviated Journal
Volume 62 Issue 3 Pages 1010-1016
Keywords (up) 2DEG, GaAs/AlGaAs, heat flow, electron-phonon, hole-phonon, carrier-phonon, interactions
Abstract The time‐resolved luminescence spectra from excited conduction subbands in three samples of multi‐quantum‐well GaAs/AlxGa1-xAs (x=0.3 and 1) semiconductors with several well widths and barrier heights were obtained under high‐density excitations by a 30‐ps pulsed laser at 532 nm, which generated electron–hole pairs to the concentration of 1010–1013/cm2 per well per pulse at 77 K. The temperature and the Fermi energy of electron were determined by fitting best the constructed time‐resolved spectrum to the observed, and the time‐dependent electron energy was obtained by using these parameters. The energy‐loss rates of hot electrons are at least twice smaller than the calculated ones induced by the electron‐polar phonon scattering, including the screening effect due to the high carrier density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 635
Permanent link to this record
 

 
Author Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Gayduchenko, I. A.; Titova, N.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S.
Title Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection Type Journal Article
Year 2016 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 120 Issue 4 Pages 044501 (1 to 13)
Keywords (up) carbon nanotubes, CNT detectors, plasmons
Abstract We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1777
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Baryshev, A.; Gao, J. R.; Klapwijk, T. M.; Kooi, J. W.; Jellema, W.; Yang, Z. Q.
Title Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal
Volume 100 Issue 7 Pages 074507
Keywords (up) HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 385
Permanent link to this record