|   | 
Details
   web
Records
Author (up) Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl
Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2 Pages 364-373
Keywords PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency
Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 700
Permanent link to this record
 

 
Author (up) Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author (up) Karpowicz, Nicholas; Lu, Xiaofei; Zhang, X.-C.
Title Terahertz gas photonics Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal
Volume 56 Issue 10 Pages 1137-1150
Keywords
Abstract The underlying physics of the generation and detection of terahertz (THz) waves in gases are described. The THz wave generation process takes place in two steps: asymmetric gas ionization by two-frequency laser fields, followed by interaction of the ionized electron wave packets with the surrounding medium, producing an intense ‘echo' with tunable spectral content. In order to clarify the physical picture at the moment of ionization, the laser–atom interaction is treated through solution of the time-dependent Schrödinger equation, yielding an ab initio understanding of the release of the electron wave packets. The second step, where the electrons interact with the surrounding plasma is treated analytically. The resulting pressure dependence of the THz radiation is explored in detail. The THz wave detection process is shown to be the result of four-wave mixing, leading to analytical expressions of the signal obtained which allow for improved optimization of systems that exploit these effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 670
Permanent link to this record
 

 
Author (up) Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G.
Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2-3 Pages 334-344
Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN
Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 701
Permanent link to this record
 

 
Author (up) Polyakov, Sergey V.; Migdalla, Alan L.
Title Quantum radiometry Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal
Volume 56 Issue 9 Pages 1045-1052
Keywords
Abstract We review radiometric techniques that take advantage of photon counting and stem from the quantum laws of nature. We present a brief history of metrological experiments and review the current state of experimental quantum radiometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 671
Permanent link to this record