|
Records |
Links |
|
Author |
Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl |
|
|
Title |
Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors |
Type |
Journal Article |
|
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
J. Modern Opt. |
|
|
Volume |
56 |
Issue |
2 |
Pages |
364-373 |
|
|
Keywords |
PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency |
|
|
Abstract |
A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ gujma @ |
Serial |
700 |
|
Permanent link to this record |
|
|
|
|
Author |
Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G. |
|
|
Title |
Ultrafast superconducting single-photon detector |
Type |
Journal Article |
|
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
J. Modern Opt. |
|
|
Volume |
56 |
Issue |
15 |
Pages |
1670-1680 |
|
|
Keywords |
SSPD, SNSPD |
|
|
Abstract |
The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ akorneev @ |
Serial |
607 |
|
Permanent link to this record |
|
|
|
|
Author |
Karpowicz, Nicholas; Lu, Xiaofei; Zhang, X.-C. |
|
|
Title |
Terahertz gas photonics |
Type |
Journal Article |
|
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
|
|
|
Volume |
56 |
Issue |
10 |
Pages |
1137-1150 |
|
|
Keywords |
|
|
|
Abstract |
The underlying physics of the generation and detection of terahertz (THz) waves in gases are described. The THz wave generation process takes place in two steps: asymmetric gas ionization by two-frequency laser fields, followed by interaction of the ionized electron wave packets with the surrounding medium, producing an intense ‘echo' with tunable spectral content. In order to clarify the physical picture at the moment of ionization, the laser–atom interaction is treated through solution of the time-dependent Schrödinger equation, yielding an ab initio understanding of the release of the electron wave packets. The second step, where the electrons interact with the surrounding plasma is treated analytically. The resulting pressure dependence of the THz radiation is explored in detail. The THz wave detection process is shown to be the result of four-wave mixing, leading to analytical expressions of the signal obtained which allow for improved optimization of systems that exploit these effects. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ gujma @ |
Serial |
670 |
|
Permanent link to this record |
|
|
|
|
Author |
Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G. |
|
|
Title |
Superconducting parallel nanowire detector with photon number resolving functionality |
Type |
Journal Article |
|
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
J. Modern Opt. |
|
|
Volume |
56 |
Issue |
2-3 |
Pages |
334-344 |
|
|
Keywords |
PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN |
|
|
Abstract |
We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0950-0340 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ gujma @ |
Serial |
701 |
|
Permanent link to this record |
|
|
|
|
Author |
Polyakov, Sergey V.; Migdalla, Alan L. |
|
|
Title |
Quantum radiometry |
Type |
Journal Article |
|
Year |
2009 |
Publication |
J. Modern Opt. |
Abbreviated Journal |
|
|
|
Volume |
56 |
Issue |
9 |
Pages |
1045-1052 |
|
|
Keywords |
|
|
|
Abstract |
We review radiometric techniques that take advantage of photon counting and stem from the quantum laws of nature. We present a brief history of metrological experiments and review the current state of experimental quantum radiometry. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
RPLAB @ gujma @ |
Serial |
671 |
|
Permanent link to this record |