toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Koshelets, V. P.; Ermakov, A. B.; Filippenko, L. V.; Koryukin, O. V.; Khudchenko, A. V.; Sobolev, A. S.; Torgashin, M. Yu.; Yagoubov, P. A.; Hoogeveen, R. W. M.; Vreeling, W. J.; Wild, W.; Pylypenko, O. M. url  doi
openurl 
  Title Superconducting submm integrated receiver for TELIS Type Conference Article
  Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 43 Issue Pages 1377-1380  
  Keywords SIR  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 514  
Permanent link to this record
 

 
Author Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N. doi  openurl
  Title Optimisation of spontaneous four-wave mixing in a ring microcavity Type Conference Article
  Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 47 Issue 10 Pages 887-891  
  Keywords ring microcavity  
  Abstract (up) Abstract. A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the disper- sion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numeri- cal calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: com- pletely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 1142  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 741 Issue Pages 012143 (1 to 6)  
  Keywords carbon nanotubes, CNT  
  Abstract (up) Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1336  
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G. url  doi
openurl 
  Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1092 Issue Pages 012039 (1 to 4)  
  Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors  
  Abstract (up) Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1302  
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title CMOS compatible nanoantenna-nanodiamond integration Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012180  
  Keywords bull-eye antenna, hyperbolic metamaterials, NV-centers  
  Abstract (up) Here we demonstrate CMOS compatible method to deterministically produce nanoantenna with nanodiamonds systems on example of bull-eye antenna on top of on hyperbolic metamaterials. We study the statistics of the placement of nanodiamonds and measure the fluorescence lifetime and the second-order correlation function of NV-centers inside nanodiamonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1182  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: