|   | 
Details
   web
Records
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol'tsman, G.
Title New advanced generation of superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue Pages (down) 012307 (1 to 6)
Keywords PNR SSPD; SNSPD
Abstract We present our latest generation of ultrafast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). We have developed, fabricated and tested a multi-sectional design of NbN nanowire structures. The novel SSPD structures consist of several meander sections connected in parallel, each having a resistor connected in series. The novel SSPDs combine 10 μm × 10 μm active areas with a low kinetic inductance and PNR capability. That resulted in a significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector's response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performances of the PNR SSPDs. The PNR SSPDs are perfectly suited for fibreless free-space telecommunications, as well as for ultrafast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1245
Permanent link to this record
 

 
Author Casaburi, A.; Ejrnaes, M.; Quaranta, O.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol'tsman, G.; Lisitskiy, M.; Esposito, E.; Nappi, C.; Cristiano, R.; Pagano, S.
Title Experimental characterization of NbN nanowire optical detectors with parallel stripline configuration Type Conference Article
Year 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 97 Issue Pages (down) 012265 (1 to 6)
Keywords NbN SSPD, SNSPD
Abstract We have developed a novel geometrical configuration for NbN-based superconducting single photon optical detector (SSPD) that achieves two goals: a much lower intrinsic impedance, and a consequently greater bandwidth, and a much larger signal amplitude compared to the standard meandered configuration. This has been obtained by implementing a properly designed parallel stripline structure where a cascade switching mechanism occurs when one of the striplines is hit by an optical photon. The overall switching occurs synchronously and in a very short time, giving rise to a strong and fast voltage pulse. The SSPD have been realized using state of the art NbN deposition technology and e-beam lithography. The strips are 100 nm wide and 5 μm long and have been realized with 4 nm NbN film on sapphire and Si substrate. We report on experimental characterization of such novel devices. The performances of the proposed novel type of SSPD are compared with standard SSPD design and results in terms of signal amplitude, risetime and effective detection area.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6596 ISBN Medium
Area Expedition Conference 8th European Conference on Applied Superconductivity (EUCAS 2007)
Notes Approved no
Call Number Serial 1416
Permanent link to this record
 

 
Author Titova, N.; Gayduchenko, I. A.; Moskotin, M. V.; Fedorov, G. F.; Goltsman, G. N.
Title Carbon nanotube based terahertz radiation detectors Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages (down) 012208 (1 to 5)
Keywords carbon nanotubes, CNT
Abstract In this paper, we study terahertz detectors based on single quasimetallic carbon nanotubes (CNT) with asymmetric contacts and different metal pairs. We demonstrate that, depending on the contact metallization of the device, various detection mechanisms are manifested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1270
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A.
Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages (down) 012195 (1 to 4)
Keywords SSPD modelling, SNSPD
Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1785
Permanent link to this record
 

 
Author Titova, N. A.; Baeva, E. M.; Kardakova, A. I.; Goltsman, G. N.
Title Fabrication of NbN/SiNx:H/SiO2 membrane structures for study of heat conduction at low temperatures Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages (down) 012190
Keywords NbN films, insulating membrane
Abstract Here we report on the development of NbN/SiNx:H/SiO2-membrane structures for investigation of the thermal transport at low temperatures. Thin NbN films are known to be in the regime of a strong electron-phonon coupling, and one can assume that the phononic and electronic baths in the NbN are in local equilibrium. In such case, the cooling of the NbN-based devices strongly depends on acoustic matching to the substrate and substrate thermal characteristics. For the insulating membrane much thicker than the NbN film, our preliminary results demonstrate that the membrane serves as an additional channel for the thermal relaxation of the NbN sample. That implies a negligible role of thermal boundary resistance of the NbN-SiNx:H interface in comparison with the internal thermal resistance of the insulating membrane.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1165
Permanent link to this record