|   | 
Details
   web
Records
Author Johnson, B. R.; Reed, M. D.; Houck, A. A.; Schuster, D. I.; Bishop, Lev S.; Ginossar, E.; Gambetta, J. M.; Dicarlo, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J.
Title Quantum non-demolition detection of single microwave photons in a circuit Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 9 Pages 663-667
Keywords (up) fromIPMRAS
Abstract Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repeated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector that operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme that measures the number of photons inside a high-quality-factor microwave cavity on a chip. This scheme maps a photon number, n, onto a qubit state in a single-shot by means of qubit-photon logic gates. We verify the operation of the device for n=0 and 1 by analysing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 806
Permanent link to this record
 

 
Author Haviland, David
Title Superconducting circuits: Quantum phase slips Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue Pages 565–566
Keywords (up) fromIPMRAS
Abstract Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 807
Permanent link to this record
 

 
Author Zhu, J.; Christensen, J.; Jung, J.; Martin-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F. J.
Title A holey-structured metamaterial for acoustic deep-subwavelength imaging Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 1 Pages 52-55
Keywords (up) fromIPMRAS
Abstract For classical waves such as light or sound, diffraction sets a natural limit on how finely the details of an object can be recorded on its image. Recently, various optical superlenses based on the metamaterials concept have shown the possibility of overcoming the diffraction limit. Similar two-dimensional (2D) acoustic hyperlens designs have also been explored. Here we demonstrate a 3D holey-structured metamaterial that achieves acoustic imaging down to a feature size of λ/50. The evanescent field components of a subwavelength object are efficiently transmitted through the structure as a result of their strong coupling with Fabry-Pérot resonances inside the holey plate. This capability of acoustic imaging at a very deep-subwavelength scale may open the door for a broad range of applications, including medical ultrasonography, underwater sonar and ultrasonic non-destructive evaluation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 809
Permanent link to this record
 

 
Author Mineev, Vladimir P.
Title Superfluid helium: Order in disorder Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue Pages 253–254
Keywords (up) fromIPMRAS
Abstract Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 810
Permanent link to this record
 

 
Author Clerk, Aashish
Title Quantum phononics: To see a SAW Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 4 Pages 256-257
Keywords (up) fromIPMRAS
Abstract Mechanical oscillations of microscopic resonators have recently been observed in the quantum regime. This idea could soon be extended from localized vibrations to travelling waves thanks to a sensitive probe of so-called surface acoustic waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 811
Permanent link to this record