toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim openurl 
  Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 18 Issue 26 Pages (down) 27938-27954  
  Keywords quantum cryptography; QKD; hacking; SPD; APD  
  Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 729  
Permanent link to this record
 

 
Author Huang, Kevin C. Y.; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L. openurl 
  Title Power flow from a dipole emitter near an optical antenna Type Journal Article
  Year 2011 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 19 Issue 20 Pages (down) 19084-19092  
  Keywords optical antennas  
  Abstract Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 743  
Permanent link to this record
 

 
Author Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo openurl 
  Title Continuous high speed coherent one-way quantum key distribution Type Journal Article
  Year 2009 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 17 Issue 16 Pages (down) 13326-13334  
  Keywords quantum cryptography, QKD, PNS, SSPD, coherent one way, COW  
  Abstract Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 602  
Permanent link to this record
 

 
Author Anant, Vikas; Kerman, Andrew J.; Dauler, Eric A.; Yang, Joel K. W.; Rosfjord, Krist.ine M.; Berggren, Karl K. url  doi
openurl 
  Title Optical properties of superconducting nanowire single-photon detectors Type Journal Article
  Year 2008 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 16 Issue 14 Pages (down) 10750  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Serial 413  
Permanent link to this record
 

 
Author Miller, Aaron J.; Lita, Adriana E.; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M.; Nam, Sae Woo openurl 
  Title Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent Type Journal Article
  Year 2011 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 19 Issue 10 Pages (down) 9102-9110  
  Keywords TES  
  Abstract We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 666  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: