|   | 
Details
   web
Records
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.
Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 97 Issue 18 Pages 184512 (1 to 13)
Keywords WSi films, diffusion constant, SSPD, SNSPD
Abstract (up) We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1305
Permanent link to this record
 

 
Author Zhang, X.; Lita, A. E.; Smirnov, K.; Liu, H. L.; Zhu, D.; Verma, V. B.; Nam, S. W.; Schilling, A.
Title Strong suppression of the resistivity near the superconducting transition in narrow microbridges in external magnetic fields Type Journal Article
Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 101 Issue 6 Pages 060508 (1 to 6)
Keywords MoSi, WSi films
Abstract (up) We have investigated a series of superconducting bridges based on homogeneous amorphous WSi and MoSi films, with bridge widths w ranging from 2 to 1000μm and film thicknesses d∼4−6 and 100 nm. Upon decreasing the bridge widths below the respective Pearl lengths, we observe in all cases distinct changes in the characteristics of the resistive transitions to superconductivity. For each of the films, the resistivity curves R(B,T) separate at a well-defined and field-dependent temperature T∗(B) with decreasing the temperature, resulting in a dramatic suppression of the resistivity and a sharpening of the transitions with decreasing bridge width w. The associated excess conductivity in all the bridges scales as 1/w, which may suggest either the presence of a highly conducting region that is dominating the electric transport, or a change in the vortex dynamics in narrow enough bridges. We argue that this effect can only be observed in materials with sufficiently weak vortex pinning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1800
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N.
Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
Year 2003 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 67 Issue 13 Pages 132508 (1 to 4)
Keywords NbN SSPD, SNSPD
Abstract (up) We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1519
Permanent link to this record
 

 
Author Coumou, P. C. J. J.; Driessen, E. F. C.; Bueno, J.; Chapelier, C.; Klapwijk, T. M.
Title Electrodynamic response and local tunneling spectroscopy of strongly disordered superconducting TiN films Type Journal Article
Year 2013 Publication Phys. Rev. B Abbreviated Journal
Volume 88 Issue 18 Pages 180505 (1 to 5)
Keywords strongly disordered superconducting TiN films, microwave resonators
Abstract (up) We have studied the electrodynamic response of strongly disordered superconducting TiN films using microwave resonators, where the disordered superconductor is the resonating element in a high-quality superconducting environment of NbTiN. We describe the response assuming an effective pair-breaking mechanism modifying the density of states and compare this to local tunneling spectra obtained using scanning tunneling spectroscopy. For the least disordered film (kFl=8.7, Rs=13Ω), we find good agreement, whereas for the most disordered film (kFl=0.82, Rs=4.3kΩ), there is a strong discrepancy, which signals the breakdown of a model based on uniform properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1069
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W.
Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 89 Issue 10 Pages 104513 (1 to 7)
Keywords NbN SSPD, SNSPD
Abstract (up) We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1367
Permanent link to this record