|   | 
Details
   web
Records
Author Zhang, X.; Lita, A. E.; Smirnov, K.; Liu, H. L.; Zhu, D.; Verma, V. B.; Nam, S. W.; Schilling, A.
Title Strong suppression of the resistivity near the superconducting transition in narrow microbridges in external magnetic fields Type Journal Article
Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 101 Issue 6 Pages 060508 (1 to 6)
Keywords (up) MoSi, WSi films
Abstract We have investigated a series of superconducting bridges based on homogeneous amorphous WSi and MoSi films, with bridge widths w ranging from 2 to 1000μm and film thicknesses d∼4−6 and 100 nm. Upon decreasing the bridge widths below the respective Pearl lengths, we observe in all cases distinct changes in the characteristics of the resistive transitions to superconductivity. For each of the films, the resistivity curves R(B,T) separate at a well-defined and field-dependent temperature T∗(B) with decreasing the temperature, resulting in a dramatic suppression of the resistivity and a sharpening of the transitions with decreasing bridge width w. The associated excess conductivity in all the bridges scales as 1/w, which may suggest either the presence of a highly conducting region that is dominating the electric transport, or a change in the vortex dynamics in narrow enough bridges. We argue that this effect can only be observed in materials with sufficiently weak vortex pinning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1800
Permanent link to this record
 

 
Author Heslinga, D. R.; Shafranjuk, S. E.; van Kempen, H.; Klapwijk, T. M.
Title Observation of double-gap-edge Andreev reflection at Si/Nb interfaces by point-contact spectroscopy Type Journal Article
Year 1994 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 49 Issue 15 Pages 10484-10494
Keywords (up) Nb, Si, Nb-Si, Nb/Si, Si/Nb, Andreev reflection, point-contact spectroscopy
Abstract Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1005
Permanent link to this record
 

 
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I.
Title Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 57 Issue 24 Pages 15623-15628
Keywords (up) NbC films
Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1585
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S.
Title Coherent flux tunneling through NbN nanowires Type Journal Article
Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 88 Issue 22 Pages 220506 (1 to 5)
Keywords (up) NbN nanowires
Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1369
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W.
Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 89 Issue 10 Pages 104513 (1 to 7)
Keywords (up) NbN SSPD, SNSPD
Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1367
Permanent link to this record