|   | 
Details
   web
Records
Author Stéphane Claude
Title Sideband-separating SIS mixer for ALMA band 7, 275–370 GHz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 41
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_SIS_60at0p34THz Serial 333
Permanent link to this record
 

 
Author Grimes, P.; Kittara, P.; Yassin, G.; Withington, S.; Jacobs, K.
Title Investigation of the performance of a 700 GHz nline mixer Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 247
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_SIS_250at0p69THz Serial 336
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Improved NbN phonon cooled hot electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 413-423
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance to Au pads. By adding either a 5 nm Nb or a 10 nm NbTiN layer between the Au and NbN, to preserve superconductivity in the NbN under the Au contact pad, superior noise temperatures have been obtained. Using DC I,V curves and resistive transitions in combination with process parameters we analyze the nature of these improved devices and determine interface transparencies.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 337
Permanent link to this record
 

 
Author Albert Betz; Rita Boreiko; Yongdong Zhou; Jun Jhao; Yusuf Selamet; Yong Chang; Renganathan Ashokan; Charlie Bukcer; Sivalingam Sivanathan
Title HgCdTe photoconductive mixers for 3-15 terahertz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 102-111
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ HgCdTe_at3to15THz_fabr Serial 338
Permanent link to this record
 

 
Author Finkel, Matvey; Vachtomin, Yuriy; Antipov, Sereey; Drakinski, Vladimir; Kaurova, Natalia; Voronov, Boris; Goltsman, Greeory
Title Gain bandwidth and noise temperature of NbTiN HEB mixer Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 276-285
Keywords NbTiN HEB mixer
Abstract We have determined that the gain bandwidth of phonon-cooled HEB mixer employing NbTiN films deposited on MgO layer over Si substrate is limited b y the escape of phonons to the substrate. The cut-off frequencies of 1 um long devices operating at T 71, based on 3.5 nm. 4 nm and 10 nm thick films amount to 400 Mk. 300 MHz, and 100 MHz, respectivel y . The gain bandwidth of 0.13 . um long devices fabricated from 3.5 nm thick film is larger and amounts to 0.8 GIL; at the optimal operating point and to 1.5 GIL: at larger bias. The increase of the gain bandwidth from 400 MHz up to 1.5 GH: with the change of bridge length is attributed to diffusion cooling. A double sideband noise temperature of 4000 K was obtained for heterodyne receiver utilizing pilot NbTiN HEB mixer (not optimized for normal state resistance) operating at the local oscillator frequency of 2.5 THz.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1500
Permanent link to this record