|   | 
Details
   web
Records
Author Baryshev, A. M.; Wild, W.; Likhachev, S. F.; Vdovin, V. F.; Goltsman, G. N.; Kardashev, N. S.
Title Main parameters and instrumentation of Millimetron space mission Type Abstract
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT
Volume Issue Pages 108
Keywords (down) SVLBI, Millimetron space observatory
Abstract Millimetron (official RosKosmos name ”Spectrum-M”) is a part of ambitious program called Spectrum intended to cover the whole electromagnetic spectrum with world class facilities. It is an approved mission included in Russian space program with the launch date in 2017..2019 time frame. The Millimetron satellite has a deployable 12 m diameter antenna with inner solid 4..6 m dish and a rim of petals. The mirror design is largely based on Radioastron mission concept that will be launched in 2009. If the antenna is passively cooled by radiation to open space, it would operate at approx. 50 K surface temperature, due to presence of a deployable three layer radiation screen. As a goal, there is a consideration of active cooling of antenna to 4 K, but this will depend on resources available to the project. Lagrangian libration point L2 considered for Millimetron orbit. There are four groups of scientific instruments envisioned: SVLBI instruments Space-Earth VLBI. It will allow to achieve unprecedented spatial resolution. Millimetron mission will attempt to achieve a mm/submm wave SVLBI. For that purpose, a SVLBI instrument covering selected ALMA bands and a standard VLBI band is envisioned, accompanied by a maser reference oscillator, a data digitizing and memory system, and a high speed data transmission link to ground. The ALMA bands can be extended to cover water lines if detector technology allows. Type of detector – heterodyne. Photometer/polarimeter. Recent progress in direct detector cameras with low spectral resolution, allows to propose a large format (5-10 kPixel) photometer camera on board of Millimetron mission. This camera can cover 0.1 – 2 THz region (with adequate amount of pixels per each subband). Wide band moderate resolution imaging spectrometer. Wide band moderate R = 1000 imaging spectrometer type instrument similar to SPICA SAFARI is planned, taking advantage of large cooled dish. It will cover the adequate spectral range allowable by antenna and will also work below 1 THz, as no ground instrument can have a cold main dish. High resolution spectrometer. For high resolution spectroscopy a heterodyne instrument is proposed, conceptually similar to HIFI on Herschel. This instrument will cover interesting frequency spots in 0.5..4 THz frequency range (using central part of antenna for higher frequency). It is sure that advances in LO and mixer technology will allow this frequency coverage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1401
Permanent link to this record
 

 
Author Li, Chao-Te; Chen, Tse-Jun; Ni, Tong-Liang; Lu, Wei-Chun; Chiu, Chuang-Ping; Chen, Chong-Wen; Chang, Yung-Chin; Wang, Ming-Jye Shi, Sheng-Cai
Title Development of SIS mixers for SMA 400-520 GHz band Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 24-30
Keywords (down) SIS mixer, noise temperature, SMA
Abstract SIS junction mixers were developed for SMA 400-520 GHz band. The results show receiver noise temperature around 100 K across the band, with noise contribution from RF loss and IF estimated to be around 50 K and 20K, respectively. Two schemes were used to tune out junction's parasitic capacitance. When a parallel inductor is employed, the input impedance is close to Rn, which facilitates impedance matching between the junction and the waveguide probe. Waveguide probes were designed to achieve a low feed-point impedance to match to the junction resistance. Optimum embedding impedances for lower receiver noise temperature were investigated. Performances of two schemes and composition of receiver noise were also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 617
Permanent link to this record
 

 
Author Jackson, B. D.; Hesper, R.; Adema, J.; Barkhof, J.; Baryshev, A. M.; Zijlstra, T.; Zhu, S.; Klapwijk, T. M.
Title Series production of state-of-the-art 602-720 GHz SIS receivers for band 9 of ALMA Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 7-11
Keywords (down) SIS mixer, noise temperature, ALMA, band 9
Abstract The Atacama Large Millimeter/Sub-millimeter Array (ALMA) requires the development and production of 73 state-of-the-art receivers for the 602-720 GHz range – the ALMA Band 9 cartridges. Development and pre-production of the first 8 cartridges was completed between 2003 and 2008, resulting in a cartridge design that meets the project's challenging requirements. The cartridge design remains essentially unchanged for production, while the production and test processes developed during pre-production have been fine-tuned to address the biggest new challenge for this phase – ramping up production to a rate of 2 cartridges per month over 2009-2012.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 618
Permanent link to this record
 

 
Author Billade, Bhushan; Belitsky, Victor; Pavolotsky, Alexey; Lapkin, Igor; Kooi, Jacob
Title ALMA band 5 (163-211 GHz) sideband separation mixer Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 19-23
Keywords (down) SIS mixer, noise temperature, ALMA, band 5
Abstract We present the design of ALMA Band 5 sideband separation SIS mixer and experimental results for the double side band mixer and first measurement results 2SB mixer. In this mixer, the LO injection circuitry is integrated on the mixer substrate using a directional coupler, combining microstrip lines with slot-line branches in the ground plane. The isolated port of the LO coupler is terminated by wideband floating elliptical termination. The mixer employs two SIS junctions with junction area of 3 µm² each, in the twin junction configuration, followed by a quarter wave transformer to match the RF probe. 2SB mixer uses two identical but mirrored chips, whereas each DSB mixer has the same end-piece configuration. The 2S mixer has modular design such that DSB mixers are measured independently and then integrated into 2SB simply by placing around the middle piece. Measurements of the DSB mixer show noise temperature of around 40K over the entire band. 2SB mixer is not fully characterized yet, however, preliminary measurement indicates SSB (un-corrected) noise temperature of 80K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 616
Permanent link to this record
 

 
Author Uzawa, Y.; Kojima, T.; Kroug, M.; Takeda, M.; Candotti, M.; Fujii, Y.; Shan, W.-L.; Kaneko, K.; Shitov, S.; Wang, M.-J.
Title Development of the 787-950 GHz ALMA band 10 cartridge Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 12-12
Keywords (down) SIS mixer, noise temperature, ALMA, band 10
Abstract We are developing the Atacama Large Millimeter/Submillimeter Array (ALMA) Band 10 (787-950 GHz) receiver cartridge. The incoming beam from the 12-m antenna is reflected by a pair of two ellipsoidal mirrors placed in the cartridge, and then split into two orthogonal polarizations by a free-standing wire-grid. Each beam enters a corrugated feed horn attached to a double-side-band (DSB) mixer block. The mixer uses a full-height waveguide and an NbTiN- or NbN-based superconductor-insulator-superconductor (SIS) mixer chip. We are testing the following three types of mixer chips: 1) Nb SIS junctions + NbTiN/SiO2/Al tuning circuits on a quartz substrate, 2) Nb SIS junctions + NbN/SiO2/Al tuning circuits on an MgO substrate, and 3) NbN SIS junctions + NbN or NbTiN tuning circuits on an MgO substrate. The IF system uses a 4-12-GHz cooled low-noise InP-based MMIC amplifier developed by Caltech. So far, the type 1) has shown the best performance. At LO frequencies from 800 to 940 GHz, the mixer noise temperatures measured by using the standard Y-factor method were below 240 K at an operating physical temperature of 4 K. The lowest noise temperature, 169 K, was obtained at the center frequency of the band 10, as designed. These well-developed technologies will be implemented in the band 10 cartridge to achieve the ALMA specifications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 615
Permanent link to this record