|   | 
Details
   web
Records
Author (up) Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 254-261
Keywords NbN HEB mixers
Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1626
Permanent link to this record
 

 
Author (up) Okunev, 0.; Dzardranov, A.; Gol'tsman, G.; Gershenzon, E.
Title Performances of hot—electron superconducting mixer for frequencies less than the gap energy: NbN mixer for 100 GHz operation Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 247-253
Keywords NbN HEB mixers
Abstract The possibilities to improve the parameters of the 100 GHz NbN HEB superconducting waveguide mixers have been studied. The device consists of a signal strip 1 gm wide by 2 Am long made of 40 A thick NbN film. The best operation point was found at 5 K, where the mixer bandwidth made up 1.5-2 GHz and the total loss diminished down to 8 dB. The critical current density has been increased up to " 40 6 A/cm 2 , the noise temperature of the receiver (DSB) has reduced down to 450 K and the local oscillator power has decreased down to -.4).1 mcV.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1625
Permanent link to this record