toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Piotr슠Orleanski; Miroslaw슠Ciechanowicz; Malgorzata슠Michalska; Witold슠Nowosielski; Miroslaw슠Rataj; Marek슠Winkler openurl 
  Title LCU: the control unit dedicated for local oscillator subsystem in ESA HIFI/Herschel project Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal  
  Volume 6159 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ LO_control_HIFI_Heschel_2006 Serial 391  
Permanent link to this record
 

 
Author Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. doi  openurl
  Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5727 Issue Pages 95-106  
  Keywords NbN HEB mixers  
  Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV  
  Notes Approved no  
  Call Number Serial 378  
Permanent link to this record
 

 
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. doi  openurl
  Title Quantum key distribution over 300 Type Conference Article
  Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9440 Issue Pages 1F (1 to 9)  
  Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD  
  Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Orlikovsky, A. A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference on Micro- and Nano-Electronics  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048  
Permanent link to this record
 

 
Author de Graauw, Thijs; Whyborn, Nick; Caux, Emmanuel; Phillips, Tom; Stutzki, Juergen; Tielens, Xander; Güsten, Rolf; Helmich, Frank; Luinge, W.; Pearson, John; Roelfsema, Peter; Schieder, Rudolf; Wildeman, Klaas; Wafelbakker, Kees openurl 
  Title The Herschel-heterodyne instrument for the far-infrared (HIFI) Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Orlando Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 421  
Permanent link to this record
 

 
Author Thijs de Graauw; Nick Whyborn; Frank Helmich; Pieter Dieleman; Peter Roelfsema; Emmanuel Caux; Tom Phillips; Jürgen Stutzki; Douwe Beintema; Arnold Benz; Nicolas Biver; Adwin Boogert; Francois Boulanger; Sergey Cherednichenko; Odile Coeur-Joly; Claudia Comito; Emmanuel Dartois; Albrecht de Jonge; Gert de Lange; Ian Delorme; Anna DiGiorgio; Luc Dubbeldam; Kevin Edwards; Michael Fich; Rolf Güsten; Fabrice Herpin; Netty Honingh; Robert Huisman; Herman Jacobs; Willem Jellema; Jon Kawamura; Do Kester; Teun Klapwijk; Thomas Klein; Jacob Kooi; Jean-Michel Krieg; Carsten Kramer; Bob Kruizenga; Wouter Laauwen; Bengt Larsson; Christian Leinz; Rene Liseau; Steve Lord; Willem Luinge; Anthony Marston; Harald Merkel; Rafael Moreno; Patrick Morris; Anthony Murphy; Albert Naber; Pere Planesas; Jesus Martin-Pintado; Micheal Olberg; Piotr Orleanski; Volker Ossenkopf; John Pearson; Michel Perault; Sabine Phillip; Mirek Rataj; Laurent Ravera; Paolo Saraceno; Rudolf Schieder; Frank Schmuelling; Ryszard Szczerba; Russell Shipman; David Teyssier; Charlotte Vastel; Huib Visser; Klaas Wildeman; Kees Wafelbakker; John Ward; Roonan Higgins; Henri Aarts; Xander Tielens; Peer Zaal openurl 
  Title The Herschel-heterodyne instrument for the far-infrared (HIFI): instrument and pre-launch testing Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal  
  Volume 7010 Issue Pages 701004  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 422  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: