Records |
Author |
Vystavkin, A. N. |
Title |
Estimation of noise equivalent power and design analysis of an andreev reflection hot-electron microbolometer for submillimeter radioastronomy |
Type |
Journal Article |
Year |
1999 |
Publication  |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
10 |
Pages |
|
Keywords |
HEB, detector, bolometer |
Abstract |
Results of theoretical estimations and measurements of characteristics of an Andreev reflection hot-electron microbolometer for submillimeter radioastronomy made by different researchers are reviewed and analysed. Peculiarities and characteristics of the microbolometers using two types of microthermometer for measurement of the electron temperature increment under influence of the radiation: the SIN-junction and the transition-edge sensor (TES) with electrothermal feedback – are compared. Advantages of the microbolometer with the second type of the microthermometer when the TES is used simultaneously as the absorber of radiation are shown. Methods of achievement of the best noise equivalent power of the microbolometer in such version as well as methods of the matching the microbolometer with the incident radiation flow using planar antennas and with the channel of output signal measurement using a SQUID-picoammeter are considered. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
|
Serial |
496 |
Permanent link to this record |
|
|
|
Author |
Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N. |
Title |
IR single-photon receiver based on ultrathin NbN superconducting film |
Type |
Journal Article |
Year |
2013 |
Publication  |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
5 |
Pages |
|
Keywords |
SSPD, SNSPD |
Abstract |
We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
Russian |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
8 pages |
Approved |
no |
Call Number |
RPLAB @ sasha @ korneevir |
Serial |
1043 |
Permanent link to this record |
|
|
|
Author |
Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M. |
Title |
Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions |
Type |
Journal Article |
Year |
2011 |
Publication  |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
10 |
Pages |
|
Keywords |
terahertz electromagnetic radiation; superconductors; detectors of terahertz range |
Abstract |
A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
7 pages |
Approved |
no |
Call Number |
|
Serial |
1117 |
Permanent link to this record |
|
|
|
Author |
Pentin, Ivan; Finkel, Matvey; Maslennikov, Sergey; Vakhtomin, Yuri; Smirnov, Konstantin; Kaurova, Nataliya; Goltsman, Gregory |
Title |
Superconducting hot-electron-bolometer mixers for the mid-IR |
Type |
Journal Article |
Year |
2017 |
Publication  |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
10 |
Pages |
|
Keywords |
IR NbN HEB mixers |
Abstract |
The work presents the result of development of the NbN superconducting hot-electron-bolometer (HEB) mixer. The sensitive element of the mixer is directly coupled to mid-IR radiation, and doesn’t have planar metallic antenna. Investigations of noise characteristics of NbN HEB mixer were performed at the frequency 28.4 THz (λ = 10.6 µm) by using gas-discharge CW CO2-laser without consideration of optical and electrical losses in the heterodyne receiver. The noise temperature of NbN HEB mixer with the size of the sensitive element 10 µm × 10 µm was 2320 K (~ 1.5hν/kB) at the heterodyne frequency of 28.4 THz. The noise temperature was determined by measuring the Y-factor taking into account the term which describes fluctuations of zero-point oscillations in accordance with the fluctuation-dissipation theorem of Calle-Welton. Isothermal method was used to estimate the absorbed heterodyne radiation power which was 9 µW at the optimal operating point for the minimum noise temperature of NbN HEB mixer. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
Russian |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1684-1719 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
http://jre.cplire.ru/jre/oct17/9/abstract.html (Russian) Гетеродинный приемник со сверхпроводниковым смесителем на эффекте электронного разогрева для среднего инфракрасного диапазона |
Approved |
no |
Call Number |
|
Serial |
1747 |
Permanent link to this record |
|
|
|
Author |
Smirnov, K.; Vachtomin, Y.; Divochiy, A.; Antipov, A.; Goltsman, G. |
Title |
The limitation of noise equivalent power by background radiation for infrared superconducting single photon detectors coupled to standard single mode optical fibers |
Type |
Journal Article |
Year |
2015 |
Publication  |
Rus. J. Radio Electron. |
Abbreviated Journal |
Rus. J. Radio Electron. |
Volume |
|
Issue |
5 |
Pages |
|
Keywords |
NbN SSPD |
Abstract |
We investigated the minimum level of the dark count rates and noise equivalent power of superconducting single photon detectors coupled to standard single mode optical fibers. We found that background radiation limits the minimum level of the dark count rates. We also proposed the effective method for reducing background radiation out of the required spectral range of the detector. Measured noise equivalent power of detector reaches 8.9×10-19 W×Hz1/2 at a wavelength of 1.55 μm and quantum efficiency 35%. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
14 pages |
Approved |
no |
Call Number |
|
Serial |
1813 |
Permanent link to this record |