toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Korneeva, Y. P.; Manova, N. N.; Dryazgov, M. A.; Simonov, N. O.; Zolotov, P. I.; Korneev, A. A. url  doi
openurl 
  Title Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders Type Journal Article
  Year 2021 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 34 Issue 8 Pages 084001  
  Keywords NbN SSPD, SMSPD  
  Abstract We report our study of detection efficiency (DE) saturation in wavelength range 400 – 1550 nm for the NbN Superconducting Microstrip Single-Photon Detectors (SMSPD) featuring the strip width up to 3 μm. We observe an expected decrease of the $DE$ saturation plateau with the increase of photon wavelength and decrease of film sheet resistance. At 1.7 K temperature DE saturation can be clearly observed at 1550 nm wavelength in strip with the width up to 2 μm when sheet resistance of the film is above 630Ω/sq. In such strips the length of the saturation plateau almost does not depend on the strip width. We used these films to make meander-shaped detectors with the light sensitive area from 20×20μm2 to a circle 50 μm in diameter. In the latter case, the detector with the strip width of 0.49 μm demonstrates saturation of DE up to 1064 nm wavelength. Although DE at 1310 and 1550 nm is not saturated, it is as high as 60%. The response time is limited by the kinetic inductance and equals to 20 ns(by 1/e decay), timing jitter is 44 ps. When coupled to multi-mode fibre large-area meanders demonstrate significantly higher dark count rate which we attribute to thermal background photons, thus advanced filtering technique would be required for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1793  
Permanent link to this record
 

 
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V. url  doi
openurl 
  Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
  Year 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 31 Issue 3 Pages 035011 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1232  
Permanent link to this record
 

 
Author Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N. url  doi
openurl 
  Title A fast infrared detector based on patterned YBCO thin film Type Journal Article
  Year 1994 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 7 Issue 5 Pages 321-323  
  Keywords YBCO HTS detector  
  Abstract Detectors for infrared radiation ( lambda =0.85 mu m) were made of 50 nm thick YBa2Cu3O7- delta films on LaAlO3 and MgO or 60 nm thick films on NdGaO3. Parallel strips (1 mu m wide by 20 mu m long) were patterned in the films and formed the active device. These devices were designed to detect short infrared laser pulses by electron heating. The detectors were current biased into the resistive and the normal states. The response was studied in direct pulse measurements as well as by amplitude modulation of a laser. The pulse measurements showed a fast picosecond response followed by a slower decay related to phonon escape through the film-substrate interface and heat diffusion in the substrate. The frequency spectra up to 10 GHz showed two slopes with a knee corresponding to the phonon escape time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1646  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F. url  doi
openurl 
  Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
  Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 4 Issue 9 Pages 453-456  
  Keywords NbN HEB detectors  
  Abstract The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 242  
Permanent link to this record
 

 
Author Shurakov, A.; Lobanov, Y.; Goltsman, G. url  doi
openurl 
  Title Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications Type Journal Article
  Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 29 Issue 2 Pages 023001  
  Keywords HEB  
  Abstract The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1156  
Permanent link to this record
 

 
Author Galin, M. A.; Klushin, A. M.; Kurin, V. V.; Seliverstov, S. V.; Finkel, M. I.; Goltsman, G. N.; Müller, F.; Scheller, T.; Semenov, A. D. url  doi
openurl 
  Title Towards local oscillators based on arrays of niobium Josephson junctions Type Journal Article
  Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 28 Issue 5 Pages 055002 (1 to 7)  
  Keywords Josephson junction local oscillators, JJ LO  
  Abstract Various applications in the field of terahertz technology are in urgent need of compact, wide-tunable solid-state continuous wave radiation sources with a moderate power. However, satisfactory solutions for the THz frequency range are scarce yet. Here we report on coherent radiation from a large planar array of Josephson junctions (JJs) in the frequency range between 0.1 and 0.3 THz. The external resonator providing the synchronization of JJ array is identified as a straight fragment of a single-strip-line containing the junctions themselves. We demonstrate a prototype of the quasioptical heterodyne receiver with the JJ array as a local oscillator and a hot-electron bolometer mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1347  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 8 Pages 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N. url  doi
openurl 
  Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
  Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 19 Issue 4 Pages L (9 to 12)  
  Keywords NbN HEB mixers  
  Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1456  
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
  Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 15 Issue 12 Pages 1689-1692  
  Keywords NbN SSPD, SNSPD, QE, jitter, dark counts  
  Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1533  
Permanent link to this record
 

 
Author Yagoubov, Pavel; Kroug, Matthias; Merkel, Harald; Kollberg, Erik; Schubert, Josef; Hübers, Heinz-Wilhelm url  doi
openurl 
  Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages 989-991  
  Keywords NbN HEB mixers  
  Abstract The performance of NbN-based phonon-cooled hot electron bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1-0.2 µm; the width is 1-2 µm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power requirement is less than 500 nW at the receiver input. First results on spiral antenna polarization measurements are reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 295  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: