|   | 
Details
   web
Records
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zwiller, Valery; Benson, Oliver
Title Quantum nature of light measured with a single detector Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 7
Keywords (up)
Abstract We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1107.1353 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 667
Permanent link to this record
 

 
Author Mazin, Benjamin A.; Bumble, Bruce; Meeker, Seth R.; O'Brien, Kieran; McHugh, Sean; Langman, Eric
Title A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 9
Keywords (up)
Abstract Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.
Address
Corporate Author Thesis
Publisher Place of Publication eprint arXiv:1112.0004 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 698
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol'tsman, G.
Title One-dimensional resistive states in quasi-two-dimensional superconductors Type Journal Article
Year 2007 Publication arXiv:0709.0709v1 [cond-mat.supr-con] Abbreviated Journal
Volume Issue Pages 1-11
Keywords (up)
Abstract We investigate competition between one- and two-dimensional topological excitations – phase slips and vortices – in formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature T(C0). The widths w = 100 nm of our ultrathin NbN samples is substantially larger than the Ginzburg-Landau coherence length ξ = 4nm and the fluctuation resistivity above T(C0) has a two-dimensional character. However, our data shows that the resistivity below T(C0) is produced by one-dimensional excitations, – thermally activated phase slip strips (PSSs) overlapping the sample cross-section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current/temperature variations. Measuring the resistivity within seven orders of magnitude, we find that the quantum phase slips can only be essential below this level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 948
Permanent link to this record
 

 
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N.
Title Superconductivity behavior in epitaxial TiN films points at surface magnetic disorder Type Miscellaneous
Year 2019 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-10
Keywords (up)
Abstract We analyze the evolution of the normal and superconducting electronic properties in epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of in the residual resistivity, which becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such a high quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of ∼1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1278
Permanent link to this record
 

 
Author Jian Wei; David Olaya; Boris Karasik; Sergey Pereverzev; Andrei Sergeev; Michael Gershenson
Title Ultra-sensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
Year 2007 Publication ArXiv e-prints Abbreviated Journal
Volume 710 Issue Pages
Keywords (up) cond-mat.other; astro-ph; cond-mat.mes-hall
Abstract The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv:0710.5474v1; 19 pages, 3 color figures Approved no
Call Number RPLAB @ s @ Serial 407
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S.
Title Thermal relaxation in metal films bottlenecked by diffuson lattice excitations of amorphous substrates Type Miscellaneous
Year 2021 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages
Keywords (up) metal films, NbN, InOx, Au/Ni, thermal relaxation
Abstract Here we examine the role of the amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The studied samples are made up of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry was used to measure the electron temperature Te of the films as a function of Joule power per unit of area P2D. In all samples, we observe the dependence P2D∝Tne with the exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear T-dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for the phonon mean free path smaller than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1163
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol’tsman, G. N.
Title Quasi-1-dimensional superconductivity in highly disordered NbN nanowires Type Miscellaneous
Year 2016 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords (up) narrow NbN nanowires, BCS
Abstract The topic of superconductivity in strongly disordered materials has attracted a significant attention. In particular vivid debates are related to the subject of intrinsic spatial inhomogeneity responsible for non-BCS relation between the superconducting gap and the pairing potential. Here we report experimental study of electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. We find that conventional models based on phase slip concept provide reasonable fits for the shape of the R(T) transition curve. Temperature dependence of the critical current follows the text-book Ginzburg-Landau prediction for quasi-one-dimensional superconducting channel Ic~(1-T/Tc)^3/2. Hence, one may conclude that the intrinsic electronic inhomogeneity either does not exist in our structures, or, if exist, does not affect their resistive state properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1332 Approved no
Call Number Serial 1338
Permanent link to this record
 

 
Author Murphy, A.; Semenov, A.; Korneev, A.; Korneeva, Y.; Gol’tsman, G.; Bezryadin, A.
Title Dark counts initiated by macroscopic quantum tunneling in NbN superconducting photon detectors Type Miscellaneous
Year 2014 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords (up) NbN SSPD
Abstract We perform measurements of the switching current distributions of three w = 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijarvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number murphy2014dark Serial 1356
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J.
Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
Year 2011 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords (up) NbN thin film, energy gap dynamics
Abstract Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 641 Approved no
Call Number Serial 1388
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A.
Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Conference Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume 1108.5107 Issue Pages 1-11
Keywords (up) optical waveguides, waveguide SSPD
Abstract The generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 846
Permanent link to this record