|   | 
Details
   web
Records
Author (up) Alexandre Karpov; David Miller; Rice, Frank R.; Stern, Jeffrey A.; Bruce Bumble; LeDuc, Henry G.; Jonas Zmuidzinas
Title Low-noise SIS mixer for far-infrared radio astronomy Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal
Volume 5498 Issue Pages 616-621
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Glasgow, Scotland, UK Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_SIS_550at1p2THz Serial 353
Permanent link to this record
 

 
Author (up) Algie L. L., Wendell D. S. and Labaar F.
Title Phase noise and AM noise measurements in the frequency domain Type Journal Article
Year 1984 Publication Infared and milimetres waves Abbreviated Journal Academic Press.
Volume 11 Issue Pages 239-289
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 1002
Permanent link to this record
 

 
Author (up) Altshuler, B. L.; Aronov, A. G.
Title Electron-Electron Interactions in Disordered Systems Type Book Chapter
Year 1985 Publication Abbreviated Journal
Volume Issue Pages 1-151
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication North-Holland Pub. Co. Amsterdam-NY Editor
Language Summary Language Original Title
Series Editor M. Pollak and A.L. Efros Series Title Modern Problems in Condensed Matter Physics Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 267
Permanent link to this record
 

 
Author (up) Amato, Michael J.; Benford, Dominic J.; Moseley, Harvey S.; Juan Roman
Title An engineering concept and enabling technologies for a large single aperture far-infrared observatory (SAFIR) Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal
Volume 4850 Issue Pages 1120-1131
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ sun_shield_SAFIR_SPIE_2003 Serial 339
Permanent link to this record
 

 
Author (up) Amundsen, Morten; Linder, Jacob
Title General solution of 2D and 3D superconducting quasiclassical systems: coalescing vortices and nanodisk geometries Type Journal Article
Year 2015 Publication arXiv:1512.00030 [cond-mat.supr-con] Abbreviated Journal
Volume Issue Pages
Keywords quasiclassical Usadel equation, finite elements method
Abstract In quasiclassical Keldysh theory, the Green function matrix g<cb><2021> is used to compute a variety of physical quantities in mesoscopic systems. However, solving the set of non-linear differential equations that provide g<cb><2021> becomes a challenging task when going to higher spatial dimensions than one. Such an extension is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which can be captured in one-dimensional models. We here present a numerical finite element method which solves the 2D and 3D quasiclassical Usadel equation, without any linearisation, relevant for the diffusive regime. We show the application of this on two model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux and (ii) a nanodisk ferromagnet deposited on top of a superconductor. We demonstrate that it is possible to control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and thus tune the number of vortices. The finite element method presented herein could pave the way for gaining insight in physical phenomena which so far have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1066
Permanent link to this record