|   | 
Details
   web
Records
Author Gousev, Y. P.; Semenov, A. D.; Gol'tsman, G. N.; Sergeev, A. V.; Gershenzon, E. M.
Title Electron-phonon interaction in disordered NbN films Type Journal Article
Year 1994 Publication (up) Phys. B Condens. Mat. Abbreviated Journal Phys. B Condens. Mat.
Volume 194-196 Issue Pages 1355-1356
Keywords NbN films
Abstract Electron-phonon interaction time has been investigated in disordered films of NbN. A temperatures below 5.5 K tau_eph ~ T -1"6 which is attributed to the renormalisation of phonon spectrum in thin films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1649
Permanent link to this record
 

 
Author Karasik, B.S.; Milostnaya, I.I.; Zorin, M.A.; Elantev, A.I.; Gol'tsman, G.N.; Gershenzon, E.M.
Title Subnanosecond S-N and N-S switching of YBCO film induced by current pulse Type Journal Article
Year 1994 Publication (up) Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 235-240 Issue Pages 1981-1982
Keywords YBCO HTS switches
Abstract A transition of YBCO bridge 60 nm thick from superconducting to normal state induced by an abrupt current step has been studied. A subnanosecond stage has been observed during both S-N and N-S transition. The data obtained can be explained by hot-electron phenomena. On the basis of experimental results a prediction of picosecond switch performance has been made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1633
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Kouminov, P.; Goghidze, I.; Gershenzon, E. M.
Title Nonequilibrium kinetic inductive response of YBaCuO thin films to low-power laser pulses Type Journal Article
Year 1994 Publication (up) Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 235-240 Issue Pages 1979-1980
Keywords YBCO HTS KID
Abstract Transient non-equilibrium kinetic inductive voltage response of YBaCuO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 μm and 1.5 μm wavelength has been revealed. By increasing the sensitivity of 100 ps resolution time registration system and diminishing light intensity (fluence 0.1-1 μJ2/cm2) and transport current (density j≤105 A/cm2) we observed a perculiar bipolar signal form with nearly equal amplitudes of each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively of the same form as the response in the resistive and normal states: nonequilibrium picosecond scale component followed by bolometric nanosecond. Nonequilibrium response is interpreted as suppression of order parameter by excess of quasiparticles followed by a change in resistance in the resistive state and kinetic inductance in superconductive state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1634
Permanent link to this record
 

 
Author Heslinga, D. R.; Shafranjuk, S. E.; van Kempen, H.; Klapwijk, T. M.
Title Observation of double-gap-edge Andreev reflection at Si/Nb interfaces by point-contact spectroscopy Type Journal Article
Year 1994 Publication (up) Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 49 Issue 15 Pages 10484-10494
Keywords Nb, Si, Nb-Si, Nb/Si, Si/Nb, Andreev reflection, point-contact spectroscopy
Abstract Andreev reflection point-contact spectroscopy is performed on a bilayer consisting of 50-nm degenerately doped Si backed with Nb. Due to the short mean free path both injection into and transport across the Si layer are diffusive, in contrast to the ballistic conditions prevailing in clean metal layers. Nevertheless a large Andreev signal is observed in the point-contact characteristics, not reduced by elastic scattering in the Si layer or by interface scattering, but only limited by the transmission coefficient of the metal-semiconductor point contact. Two peaks in the Andreev reflection probability are visible, marking the values of the superconducting energy gap at the interface on the Nb and Si sides. This interpretation is supported by a method of solving the Bogolubov equations analytically using a simplified expression for the variation of the order parameter close to the interface. This observation enables a comparison with theoretical predictions of the gap discontinuity in the proximity effect. It is found that the widely used de Gennes model does not agree with the experimental data.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1005
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
Year 1994 Publication (up) Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.
Volume 49 Issue 13 Pages 9091-9096
Keywords YBCO films
Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes PMID:10009690 Approved no
Call Number Serial 1648
Permanent link to this record