toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A. A.; Ptitsina, N. G.; Chulcova, G. M.; Gol'Tsman, G. N.; Gershenzon, E. M.; Yngvesson, K. S. url  doi
openurl 
  Title Determination of the limiting mobility of a two-dimensional electron gas in AlxGa1-xAs/GaAs heterostructures and direct measurement of the energy relaxation time Type Journal Article
  Year 1996 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal (up) Phys. Rev. B Condens. Matter.  
  Volume 53 Issue 12 Pages R7592-R7595  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract We present results for a method to measure directly the energy relaxation time (τe) for electrons in a single AlxGa1−xAs/GaAs heterojunction; measurements were performed from 1.6 to 15 K under quasiequilibrium conditions. We find τeαT−1 below 4 K, and τe independent of T above 4 K. We have also measured the energy-loss rate, ⟨Q⟩, by the Shubnikov-de Haas technique, and find ⟨Q⟩α(T3e−T3) for T<~4.2 K; Te is the electron temperature. The values and temperature dependence of τe and ⟨Q⟩ for T<4 K agree with calculations based on piezoelectric and deformation potential acoustic phonon scattering. At 4.2 K, we can also estimate the momentum relaxation time, τm, from our measured τe. This leads to a preliminary estimate of the phonon-limited mobility at 4.2 K of μ=3×107 cm2/Vs (ns=4.2×1011 cm−2), which agrees well with published numerical calculations, as well as with an earlier indirect estimate based on measurements on a sample with much higher mobility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9982274 Approved no  
  Call Number Serial 1612  
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S. url  openurl
  Title Hot electron mixers for THz applications Type Conference Article
  Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal (up) Proc. 30th ESLAB  
  Volume Issue Pages 207-210  
  Keywords NbN HEB mixers  
  Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.  
  Address Noordwijk, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation  
  Notes Approved no  
  Call Number Serial 1606  
Permanent link to this record
 

 
Author Yagubov, P.; Gol'tsman, G.; Voronov, B.; Seidman, L.; Siomash, V.; Cherednichenko, S.; Gershenzon, E. url  openurl
  Title The bandwidth of HEB mixers employing ultrathin NbN films on sapphire substrate Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 290-302  
  Keywords NbN HEB mixers, fabrication process  
  Abstract We report on some unusual features observed during fabrication of ultrathin NbN films with high Tc. The films were used to fabricate HEB mixers, which were evaluated for IF bandwidth measurements at 140 GHz. Ultrathin films were fabricated using reactive dc magnetron sputtering with a discharge current source. Reproducible parameters of the films are assured keeping constant the difference between the discharge voltage in pure argon, and in a gas mixture, for the same current. A maximum bandwidth of 4 GHz at optimal LO and dc bias was obtained for mixer chip based on NbN film 35 A thick with Tc = 11 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, Virginia, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 266  
Permanent link to this record
 

 
Author Ellison, B. N.; Maddison, B. J.; Matheson, D. N.; Oldfield, M. L.; Marazita, S.; Crowe, T. W.; Maaskant, P.; Kelly, W. M. openurl 
  Title First results for a 2.5 THz Schottky diode waveguide mixer Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 494  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Charlottesville, Virginia, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 265  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B. url  openurl
  Title Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 331-336  
  Keywords NbN HEB mixers  
  Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 945  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: